实战 | YOLOv10 自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程)

本文主要是介绍实战 | YOLOv10 自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导读

    本文主要介绍如何使用YOLOv10在自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程)。  

YOLOv10简介

    YOLOv10是清华大学研究人员在Ultralytics Python包的基础上,引入了一种新的实时目标检测方法,解决了YOLO以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10在降低计算像素数的同时实现了相当的性能。大量实验证明,YOLOv10在多个模型上实现了卓越的精度-延迟权衡。

图片

概述

    实时目标检测旨在优先延迟准确的预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于较低水平。然而,对 NMS 的依赖和架构的低效阻碍了性能的实现。YOLOv10 通过为无 NMS 训练引入了一致的双重分配并以提高准确性为导向的核心模型设计策略,解决了答案。

网络架构

    YOLOv10 的结构建立在以前YOLO模型的基础上,同时引入了几项关键创新。模型架构由以下部分组成:

    • 主干网: YOLOv10中的主干网负责特征提取,它使用了增强版的CSPNet(跨阶段部分网络),以改善梯度流并减少计算能力。

    • 颈部:颈部设计用于汇聚不同的尺度成果,并将其传递到头部。它包括PAN(路径聚合网络)层,可实现有效的多尺度特征融合。

    • 一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号并提高学习准确性。

    • 一头:在推理过程中选择一个对象,无需NMS,从而减少并提高结果质量。

主要功能

    • 无NMS 模式:利用一致的配置来消除对NMS 的需求,从而减少错误判断。

    • 整体模型设计:从业人员绩效评估和绩效评价模块,包括轻量级数据分析、通道去耦和质量引导设计。

    • 增强的模型功能:应对大数据和部分自觉模块,在不增加大量计算成本的情况下提高性能。

模型支持:

YOLOv10有多种模型,可满足不同的应用需求:

    • YOLOv10-N:用于资源极其有限的环境的纳米版本。

    • YOLOv10-S:兼顾速度和精度的小型版本。

    • YOLOv10-M:通用中型版本。

    • YOLOv10-B:平衡型,宽度增加,精度更高。

    • YOLOv10-L:大型版本,精度更高,但计算资源增加。

    • YOLOv10-X:超大型版本可实现高精度和性能。

特性

    在准确性和效率方面,YOLOv10 优于YOLO 以前的版本和其他模型。例如,在 COCO 数据集上,YOLOv10-S 的速度是 RT-DETR-R18 的 1.8 倍,而 YOLOv10-B 与 YOLOv9-C 相比,在性能相同的条件下,延迟浏览器打开 46%,参数浏览器打开 25%。下图是使用 TensorRT FP16 在 T4 GPU 上的测试结果:

图片

实验和结果

    YOLOv10 在 COCO 等标准基准上进行了广泛测试,证明了卓越的性能和准确性。与先前的版本和其他当代版本相比,YOLOv10 在延迟和准确性方面都有显著提高。

图片

      

YOLOv10自定义数据集训练

    【1】准备数据集。数据集标注使用LabelImg,具体使用和标注可参考下面文章:

实战 | YOLOv8自定义数据集训练实现手势识别 (标注+训练+预测 保姆级教程)

    这里直接给出数据集,大家可以自行下载:

https://github.com/AarohiSingla/YOLOv10-Custom-Object-Detection/tree/main/custom_dataset/dataset

    数据集包含300张图片样本,训练集210张,验证集60张,测试集30张。

图片

图片

图片

图片

图片

    类别只有1类,所以序号都为0。

    【2】配置训练环境。

    ① 下载yoloV10项目:

git clone https://github.com/THU-MIG/yolov10.git

    ② 解压后切换到yoloV10目录下,安装依赖项:

cd yolov10
pip install .

    ③ 下载预训练模型:

图片

import osimport urllib.request
# Create a directory for the weights in the current working directoryweights_dir = os.path.join(os.getcwd(), "weights")os.makedirs(weights_dir, exist_ok=True)
# URLs of the weight filesurls = [    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10n.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10m.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10b.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10x.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10l.pt"]
# Download each filefor url in urls:    file_name = os.path.join(weights_dir, os.path.basename(url))    urllib.request.urlretrieve(url, file_name)    print(f"Downloaded {file_name}")

图片

    【3】模型训练

yolo task=detect mode=train epochs=100 batch=16 plots=True model=weights/yolov10n.pt data=custom_data.yaml

    custom_data.yaml配置如下:

图片

    【4】 模型推理:

    图片推理:

yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=test_images_1/veh2.jpg

​​​​​​​

from ultralytics import YOLOv10import supervision as svimport cv2
classes = {0: 'licence'}
model = YOLOv10('runs/detect/train/weights/best.pt')image  = cv2.imread('test_images_1/veh2.jpg')
results = model(source=image, conf=0.25, verbose=False)[0]detections = sv.Detections.from_ultralytics(results)box_annotator = sv.BoxAnnotator()
labels = [    f"{classes[class_id]} {confidence:.2f}"    for class_id, confidence in zip(detections.class_id, detections.confidence)]annotated_image = box_annotator.annotate(    image.copy(), detections=detections, labels=labels)
cv2.imshow('result', annotated_image)cv2.waitKey()cv2.destroyAllWindows()

图片

    视频推理:

yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=b.mp4
from ultralytics import YOLOv10import supervision as svimport cv2
classes = {0: 'licence'}
model = YOLOv10('runs/detect/train/weights/best.pt')
def predict_and_detect(image):    results = model(source=image, conf=0.25, verbose=False)[0]    detections = sv.Detections.from_ultralytics(results)    box_annotator = sv.BoxAnnotator()
    labels = [        f"{classes[class_id]} {confidence:.2f}"        for class_id, confidence in zip(detections.class_id, detections.confidence)    ]    annotated_image = box_annotator.annotate(        image.copy(), detections=detections, labels=labels    )    return annotated_image
def create_video_writer(video_cap, output_filename):    # grab the width, height, and fps of the frames in the video stream.    frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))    frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))    fps = int(video_cap.get(cv2.CAP_PROP_FPS))    # initialize the FourCC and a video writer object    fourcc = cv2.VideoWriter_fourcc(*'MP4V')    writer = cv2.VideoWriter(output_filename, fourcc, fps,                             (frame_width, frame_height))    return writer
video_path = 'b.mp4'cap = cv2.VideoCapture(video_path)
output_filename = "out.mp4"writer = create_video_writer(cap, output_filename)
while True:    success, img = cap.read()    if not success:        break    frame = predict_and_detect(img)    writer.write(frame)    cv2.imshow("frame", frame)        if cv2.waitKey(1)&0xFF ==27: #按下Esc键退出        break
cap.release()writer.release()

图片

—THE END—

这篇关于实战 | YOLOv10 自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1044188

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import