pytorch中的维度变换操作性质大总结:view, reshape, transpose, permute

本文主要是介绍pytorch中的维度变换操作性质大总结:view, reshape, transpose, permute,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在深度学习中,张量的维度变换是很重要的操作。在pytorch中,有四个用于维度变换的函数,view, reshape, transpose, permute。其中view, reshape都用于改变张量的形状,transpose, permute都用于重新排列张量的维度,但它们的功能和使用场景有所不同,下面将进行详细介绍,并给出测试验证代码,经过全面的了解,我们才能知道如何正确的使用这四个函数。

这里写目录标题

    • 1. torch.Tensor.view
    • 2. torch.reshape
    • 3. torch.transpose
    • 4. torch.permute
    • 5. torch.transpose与torch.permute的性质与原理

1. torch.Tensor.view

文档:Doc

  • view 方法返回一个新的张量,具有与原始张量相同的数据,但改变了形状。所以view返回的是原始数据的一个新尺寸的视图,这也就是为什么叫做view。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将其调整为3x4的形状
    y = x.view(3, 4)
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    # 判断新旧张量是否数据是相同的
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    x shape:  torch.Size([2, 6])
    y shape:  torch.Size([3, 4])
    True
    
  • view 要求原始张量是连续的(即在内存中是按顺序存储的),否则会抛出错误。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将向量转置,此时x不再是连续的
    x = x.T
    # 在不连续的张量上进行view将会报错
    y = x.view(3, 4)
    
    报错输出:
    RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
    
  • 如果张量不是连续的,可以使用 contiguous 方法先将其转换为连续的。

2. torch.reshape

文档:Doc

  • reshape不要求原始张量是连续的
  • 如果原始张量是连续的,那么实现的功能和view一样
  • 如果原始张量不是连续的,那么reshape就是tensor.contigous().view(),也就是会重新开辟一块内存空间,拷贝原始张量,使其连续;
  • 在连续张量上,view 和 reshape 性能相同。在非连续张量上,reshape 可能会稍慢一些,因为它可能需要创建新的连续张量。
    import torch
    # 创建一个2x6的张量
    x = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 8, 9, 10, 11, 12]])
    # 将向量转置,此时x不再是连续的
    x = x.T
    # 在不连续的张量上可以进行reshape
    y = x.reshape(3, 4)
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    # 但reshape返回的是新的内存中的张量
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    x shape:  torch.Size([6, 2])
    y shape:  torch.Size([3, 4])
    False
    

3. torch.transpose

Doc

  • 功能:仅用于交换两个维度。它接受两个维度参数,分别表示要交换的维度。
  • 不改变数据:不会改变数据本身,只是改变数据的视图(即不复制数据)。
  • 生成的新张量也通常不是连续的。它只是交换两个维度的顺序,不改变数据在内存中的实际存储顺序。
  • 对原始张量是不是连续的没有要求
    import torch
    # 创建一个3x4的张量
    x = torch.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12]])
    print(x.is_contiguous())
    # 交换第一个和第二个维度
    y = torch.transpose(x, 0, 1)
    print(y.is_contiguous())
    print("x shape: ", x.shape)
    print("y shape: ", y.shape)
    print(x.data_ptr() == y.data_ptr())
    
    输出:
    True
    False
    x shape:  torch.Size([3, 4])
    y shape:  torch.Size([4, 3])
    True
    

4. torch.permute

Doc

  • 可以重新排列任意数量的维度,适用于复杂的维度变换。接受一个shape元组作为参数
  • 不改变数据:不会改变数据本身,只是改变数据的视图(即不复制数据)
  • 生成的新张量通常不是连续的。因为它仅改变维度顺序,不改变数据在内存中的实际顺序。
  • 对原始张量是不是连续的没有要求
    	import torch# 创建一个3x4x5的张量x = torch.randn(3, 4, 5)# 将其第一个和第二个维度交换y = torch.permute(x, (1, 0, 2))print(y.is_contiguous())print(x.data_ptr() == y.data_ptr())print(y.size())  # 输出:torch.Size([4, 3, 5])
    
    输出:
    False
    True
    torch.Size([4, 3, 5])
    

5. torch.transpose与torch.permute的性质与原理

这两者的功能和各方面的性质基本是相同的,只是一个只能交换两个维度,一个能进行更复杂的维度排列。他们的原理是:transpose 和 permute 通过改变张量的 strides(步幅)来重新排列维度。strides 定义了在内存中沿着每个维度移动的步长。它们不改变张量的数据,只是改变了访问数据的方式。因此,这些操作可以应用于任何张量,无论它们是否连续。

这篇关于pytorch中的维度变换操作性质大总结:view, reshape, transpose, permute的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037317

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult