【深度学习】之 卷积(Convolution2D)、最大池化(Max Pooling)和 Dropout 的NumPy实现

本文主要是介绍【深度学习】之 卷积(Convolution2D)、最大池化(Max Pooling)和 Dropout 的NumPy实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 2D 卷积操作

import numpy as npdef conv2d(image, kernel, stride=1, padding=0):"""应用2D卷积操作到输入图像上。参数:- image: 输入图像,2D数组。- kernel: 卷积核,2D数组。- stride: 卷积步幅。- padding: 图像周围的零填充数量。返回值:- output: 卷积操作的结果。"""# 对输入图像添加零填充if padding > 0:image = np.pad(image, ((padding, padding), (padding, padding)), mode='constant')kernel_height, kernel_width = kernel.shapeimage_height, image_width = image.shape# 计算输出的尺寸output_height = (image_height - kernel_height) // stride + 1output_width = (image_width - kernel_width) // stride + 1output = np.zeros((output_height, output_width))for i in range(0, output_height):for j in range(0, output_width):start_i = i * stridestart_j = j * strideend_i = start_i + kernel_heightend_j = start_j + kernel_widthoutput[i, j] = np.sum(image[start_i:end_i, start_j:end_j] * kernel)return output# 示例用法
image = np.array([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]])kernel = np.array([[1, 0],[0, -1]])conv_result = conv2d(image, kernel, stride=1, padding=1)
print("卷积结果:\n", conv_result)

2. 2D 最大池化操作

def max_pool2d(image, pool_size=2, stride=2, padding=0):"""应用2D最大池化操作到输入图像上。参数:- image: 输入图像,2D数组。- pool_size: 池化窗口的大小。- stride: 池化步幅。- padding: 图像周围的零填充数量。返回值:- output: 最大池化操作的结果。"""# 对输入图像添加零填充if padding > 0:image = np.pad(image, ((padding, padding), (padding, padding)), mode='constant')image_height, image_width = image.shape# 计算输出的尺寸output_height = (image_height - pool_size) // stride + 1output_width = (image_width - pool_size) // stride + 1output = np.zeros((output_height, output_width))for i in range(0, output_height):for j in range(0, output_width):start_i = i * stridestart_j = j * strideend_i = start_i + pool_sizeend_j = start_j + pool_sizeoutput[i, j] = np.max(image[start_i:end_i, start_j:end_j])return output# 示例用法
pool_result = max_pool2d(conv_result, pool_size=2, stride=2, padding=0)
print("最大池化结果:\n", pool_result)

3. Dropout 操作

def dropout(X, drop_prob):"""对输入应用dropout。参数:- X: 输入数组。- drop_prob: 丢弃神经元的概率 (0 <= drop_prob < 1)。返回值:- output: 应用dropout后的结果。"""if drop_prob < 0.0 or drop_prob >= 1.0:raise ValueError("drop_prob必须在范围[0.0, 1.0)内。")keep_prob = 1 - drop_probmask = np.random.rand(*X.shape) < keep_probreturn X * mask / keep_prob# 示例用法
np.random.seed(0)  # 为了结果的可重复性
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
dropout_result = dropout(X, drop_prob=0.5)
print("Dropout结果:\n", dropout_result)

更多示例和代码请参考我的 GitHub 项目:Machine_DLearning_With_NP,欢迎 star

水平有限,有问题随时交流~

这篇关于【深度学习】之 卷积(Convolution2D)、最大池化(Max Pooling)和 Dropout 的NumPy实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034691

相关文章

SpringBoot基于沙箱环境实现支付宝支付教程

《SpringBoot基于沙箱环境实现支付宝支付教程》本文介绍了如何使用支付宝沙箱环境进行开发测试,包括沙箱环境的介绍、准备步骤、在SpringBoot项目中结合支付宝沙箱进行支付接口的实现与测试... 目录一、支付宝沙箱环境介绍二、沙箱环境准备2.1 注册入驻支付宝开放平台2.2 配置沙箱环境2.3 沙箱

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel