【深度学习】之 卷积(Convolution2D)、最大池化(Max Pooling)和 Dropout 的NumPy实现

本文主要是介绍【深度学习】之 卷积(Convolution2D)、最大池化(Max Pooling)和 Dropout 的NumPy实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 2D 卷积操作

import numpy as npdef conv2d(image, kernel, stride=1, padding=0):"""应用2D卷积操作到输入图像上。参数:- image: 输入图像,2D数组。- kernel: 卷积核,2D数组。- stride: 卷积步幅。- padding: 图像周围的零填充数量。返回值:- output: 卷积操作的结果。"""# 对输入图像添加零填充if padding > 0:image = np.pad(image, ((padding, padding), (padding, padding)), mode='constant')kernel_height, kernel_width = kernel.shapeimage_height, image_width = image.shape# 计算输出的尺寸output_height = (image_height - kernel_height) // stride + 1output_width = (image_width - kernel_width) // stride + 1output = np.zeros((output_height, output_width))for i in range(0, output_height):for j in range(0, output_width):start_i = i * stridestart_j = j * strideend_i = start_i + kernel_heightend_j = start_j + kernel_widthoutput[i, j] = np.sum(image[start_i:end_i, start_j:end_j] * kernel)return output# 示例用法
image = np.array([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]])kernel = np.array([[1, 0],[0, -1]])conv_result = conv2d(image, kernel, stride=1, padding=1)
print("卷积结果:\n", conv_result)

2. 2D 最大池化操作

def max_pool2d(image, pool_size=2, stride=2, padding=0):"""应用2D最大池化操作到输入图像上。参数:- image: 输入图像,2D数组。- pool_size: 池化窗口的大小。- stride: 池化步幅。- padding: 图像周围的零填充数量。返回值:- output: 最大池化操作的结果。"""# 对输入图像添加零填充if padding > 0:image = np.pad(image, ((padding, padding), (padding, padding)), mode='constant')image_height, image_width = image.shape# 计算输出的尺寸output_height = (image_height - pool_size) // stride + 1output_width = (image_width - pool_size) // stride + 1output = np.zeros((output_height, output_width))for i in range(0, output_height):for j in range(0, output_width):start_i = i * stridestart_j = j * strideend_i = start_i + pool_sizeend_j = start_j + pool_sizeoutput[i, j] = np.max(image[start_i:end_i, start_j:end_j])return output# 示例用法
pool_result = max_pool2d(conv_result, pool_size=2, stride=2, padding=0)
print("最大池化结果:\n", pool_result)

3. Dropout 操作

def dropout(X, drop_prob):"""对输入应用dropout。参数:- X: 输入数组。- drop_prob: 丢弃神经元的概率 (0 <= drop_prob < 1)。返回值:- output: 应用dropout后的结果。"""if drop_prob < 0.0 or drop_prob >= 1.0:raise ValueError("drop_prob必须在范围[0.0, 1.0)内。")keep_prob = 1 - drop_probmask = np.random.rand(*X.shape) < keep_probreturn X * mask / keep_prob# 示例用法
np.random.seed(0)  # 为了结果的可重复性
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
dropout_result = dropout(X, drop_prob=0.5)
print("Dropout结果:\n", dropout_result)

更多示例和代码请参考我的 GitHub 项目:Machine_DLearning_With_NP,欢迎 star

水平有限,有问题随时交流~

这篇关于【深度学习】之 卷积(Convolution2D)、最大池化(Max Pooling)和 Dropout 的NumPy实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034691

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并