实战07- 模型融合:利用AdaBoost元算法提高分类性能

2024-06-04 20:32

本文主要是介绍实战07- 模型融合:利用AdaBoost元算法提高分类性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

元算法(meta-algorithm)是对其他算法进行组合的一种方式,即模型融合。

模型融合主要分为三种:BaggingBoosting和Stacking。
思想:将弱分类器融合成强分类器,融合后比最强的弱分类器更好。
视频导学:https://www.bilibili.com/video/BV1y4411g7ia?p=8
参考:

  • https://www.cnblogs.com/hithink/p/6424508.html
    https://www.cnblogs.com/rongyux/p/5621854.html
    注释https://www.cnblogs.com/zy230530/p/6909288.html

单层决策树(decision stump)分类器 -> 运用Adaboost -》 处理非均衡分类问题。

7.1 基于数据集多重抽样的分类器

多种分类器的组合成为集成方法(ensemble method)或者元算法(meta-algorithm)。集成方式包括:不同算法集成、同一算法不同设置的集成、数据集不同部分分配给不同的分类器的集成。

bagging:基于数据随机重抽样的分类器构建方法
· 自举汇聚法(bootstrap aggregating),也称为bagging方法。
· 各分类器权重相同
· 并行预测
· 有放回抽取得到S个数据集
· 代表方法:随机森林(random forest)

boosting: 关注被已有分类器错分的数据来获得新的分类器。
· 基于所有分类器 结果的加权求和
· 各分类器权重不相同
· 串行顺序预测
· 同一数据集
· 分类器的权重对应于上一轮迭代中的成功度
· 代表方法:AdaBoost, GBDT, XGBoost.

7.2 训练算法:基于错误提升分类器的性能

AdaBoost为例

即 adaptive boosting,自适应boosting。
训练数据中的每个样本,赋予了一个权重,这些权重构成了向量 D D D;
为了从所有弱分类器中得到最终的分类结果,AdaBoost为每个分类器分配了一个权重值 α \alpha α, 这些 α \alpha α值基于每个弱分类器的错误率。

  1. 在每一轮如何改变训练数据的权值或者概率分布?
    提高错分样本的权值,减少分对样本的权值。( D D D)

  2. 通过什么方式组合弱分类器?
    通过加法模型将弱分类器进行线性组合,比如adaboost通过加权多数表决的方式,即增大错误率小的分类器的权值,同时减小错误率较大的分类器权值。( α \alpha α)
    分类正确的样本,权重更改为: D i t + 1 = D i ( t ) e − α S u m ( D ) D_i^{t+1} = \frac{D_i^{(t)} e^{-\alpha}}{Sum(D)} Dit+1=Sum(D)Di(t)eα
    分类错误的样本,权重更改为: D i t + 1 = D i ( t ) e α S u m ( D ) D_i^{t+1} = \frac{D_i^{(t)} e^{\alpha}}{Sum(D)} Dit+1=Sum(D)Di(t)eα
    可统一为: D i t + 1 = D i ( t ) e − α y t h t S u m ( D ) D_i^{t+1} = \frac{D_i^{(t)} e^{-\alpha y_t h_t}}{Sum(D)} Dit+1=Sum(D)Di(t)eαytht, 预测结果 h t h_t ht是 +1 或 -1。

7.3 基于单层决策树构建弱分类器

单层决策树(decision stump,也称为决策树桩),仅基于单个特征来做决策,属于base algorithm。
三层循环:

  1. 针对每个特征,如x轴特征,y轴特征,每一列都是一种特征。
  2. 针对每个阈值 (步长),(rangeMax - rangeMin)/ numSteps
  3. 针对阈值下的每种情况,即不等式’lt’或者’gt’.

数组过滤: 通过比较predictedVals == labelMat两者是否相等,来赋0值。这里是想把预测错误的位置置为1, 正确置为0。 如此一来, 在后续统计总的error的时候可以直接用weightedError =D.T* errArr 或者更后面用matrix.sum()。最终得到字典、错误率、类别估计值。

7.4 完整AdaBoost算法的实现

基于单层决策树的训练过程,见P122.

numIt 指定迭代次数,这里相当于想要得到多少个相同类型的弱分类器。
m个样本,初始化每个样本的权重为 1/m
np.multiply(x,y)是对应位置相乘,这里 shape(x) == shape(y)
sign() 是符号函数。
观察输出可以看到,在D中,错误的样本权重会增大。

7.5 测试算法:基于AdaBoost的分类

输出类别的估计值乘上该单层决策树的 α \alpha α权重然后累加到aggClassEst上,作为最终结果。

7.6 示例:在一个难数据集上应用AdaBoost

检查数据, 确保标签是+1和-1
数据集默认最后一列是类别标签
是否过拟合?

7.7 非均衡分类问题

混淆矩阵(confusion matrix),不同类别的分类代价并不相等。
错误率: 指在所有测试样例中错分的样例比例。
正确率、召回率
ROC曲线与AUC
基于matplotlib绘图<1.0, 1.0>到<0, 0>

准确率accuracy 和 精确率 precision的区别
在这里插入图片描述

  1. 基于代价函数的分类器决策控制
  2. 欠抽样和过抽样——两种处理非均衡问题的数据抽样方法
    过采样的方法,如SOMTE和ADASYN算法,通常比欠采样效果好。

分类结果是标称值,回归结果是连续值。

下一篇: 利用回归预测数值型数据。

这篇关于实战07- 模型融合:利用AdaBoost元算法提高分类性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031048

相关文章

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr