基于某评论的TF-IDF下的LDA主题模型分析

2024-06-04 18:04

本文主要是介绍基于某评论的TF-IDF下的LDA主题模型分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整代码:


import numpy as np
import re
import pandas as pd
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocationdf1 = pd.read_csv('小红书评论.csv')  # 读取同目录下csv文件
# df1 = df1.drop_duplicates(subset=['用户id'])  # 获取一个id只评论一次的数据
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))  #对评论内容作清洗,只保留中文汉字,生成新的cut行
df1['cut'] = df1['cut'].apply(lambda x: " ".join(jieba.lcut(x)))  #对评论内容作分词和拼接
print(df1['cut'])
print(type(df1['cut']))# 1.构造TF-IDF
tf_idf_vectorizer = TfidfVectorizer()
tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])
# 2.特征词列表
feature_names = tf_idf_vectorizer.get_feature_names_out()
# 3.将特征矩阵转变为pandas DataFrame
matrix = tf_idf.toarray()
feature_names_df = pd.DataFrame(matrix,columns=feature_names)
print(feature_names_df)
# 所有的特征词组成列,所有的评论组成行,矩阵中的元素表示这个特征词在该评论中所占的重要性,即tf-idf值,0表示该句评论中没有该词。n_topics = 5
# 定义LDA对象
lda = LatentDirichletAllocation(n_components=n_topics,max_iter=50,learning_method='online',learning_offset=50.,random_state=0
)
# 核心,将TF-IDF矩阵放入LDA模型中
lda.fit(tf_idf)#第1部分
# 要输出的每个主题的前 n_top_words 个主题词数
n_top_words = 50
def top_words_data_frame(model: LatentDirichletAllocation,tf_idf_vectorizer: TfidfVectorizer,n_top_words: int) -> pd.DataFrame:rows = []feature_names = tf_idf_vectorizer.get_feature_names_out()for topic in model.components_:top_words = [feature_names[i]for i in topic.argsort()[:-n_top_words - 1:-1]]rows.append(top_words)columns = [f'topic {i + 1}' for i in range(n_top_words)]df = pd.DataFrame(rows, columns=columns)return df#2
def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:matrix = model.transform(X)columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]df = pd.DataFrame(matrix, columns=columns)return df# 要输出的每个主题的前 n_top_words 个主题词数# 计算 n_top_words 个主题词
top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)# 获取五个主题的前五十个特征词
print(top_words_df)# 转 tf_idf 为数组,以便后面使用它来对文本主题概率分布进行计算
X = tf_idf.toarray()# 计算完毕主题概率分布情况
predict_df = predict_to_data_frame(lda, X)# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)
import pyLDAvis
import pyLDAvis.sklearnpanel = pyLDAvis.sklearn.prepare(lda, tf_idf, tf_idf_vectorizer)
pyLDAvis.save_html(panel, 'lda_visualization.html')
pyLDAvis.display(panel)

一、数据清洗

 

代码逐行讲解:

df1 = pd.read_csv('小红书评论.csv')  # 读取同目录下csv文件
# df1 = df1.drop_duplicates(subset=['用户id'])  # 获取一个id只评论一次的数据
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))  #对评论内容作清洗,只保留中文汉字,生成新的cut行
df1['cut'] = df1['cut'].apply(lambda x: " ".join(jieba.lcut(x)))  #对评论内容作分词和拼接
print(df1['cut'])
print(type(df1['cut']))

读取同目录下的文件,df1是数据框格式

提取评论内容,并对评论内容做清洗,采用正则表达式,去除标点和英文。

用jieba对每一行的数据作分词处理,最后得到的数据展现以及数据类型。

cc395ce2626d4e26abfbe27aaf023067.png 

二、模型构建 

tf_idf_vectorizer = TfidfVectorizer()
tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])
# 2.特征词列表
feature_names = tf_idf_vectorizer.get_feature_names_out()
# 3.将特征矩阵转变为pandas DataFrame
matrix = tf_idf.toarray()
feature_names_df = pd.DataFrame(matrix,columns=feature_names)
print(feature_names_df)
# 所有的特征词组成列,所有的评论组成行,矩阵中的元素表示这个特征词在该评论中所占的重要性,即tf-idf值,0表示该句评论中没有该词。# 定义LDA对象
n_topics = 5
lda = LatentDirichletAllocation(n_components=n_topics, max_iter=50,learning_method='online',learning_offset=50.,random_state=0
)
# 核心,将TF-IDF矩阵放入LDA模型中
lda.fit(tf_idf)
  1. tf_idf_vectorizer = TfidfVectorizer()

    • 这行代码创建了一个 TfidfVectorizer 对象,这是 scikit-learn 库中的一个文本向量化工具。它将文本数据转换为TF-IDF特征矩阵,这是一种常用的文本表示形式,能够反映出文本中单词的重要性。
  2. tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])

    • 这行代码执行了两个操作:
      • fit: 根据提供的文本数据(df1['cut'])来学习词汇表和计算IDF(逆文档频率)。
      • transform: 使用学习到的词汇表和IDF来转换文本数据为TF-IDF矩阵。结果 tf_idf 是一个稀疏矩阵,其中每一行代表一个文档,每一列代表一个单词,矩阵中的值表示该单词在文档中的重要性(TF-IDF权重)。
  3. # 定义LDA对象

    • 这是一个注释行,说明接下来的代码将定义一个LDA(隐狄利克雷分配)模型对象。
  4. n_topics = 5

    • 这行代码设置了一个变量 n_topics,其值为5,表示LDA模型中的主题数量。
  5. lda = LatentDirichletAllocation( ...)

    • 这行代码创建了一个 LatentDirichletAllocation 对象,即LDA模型,用于主题建模。它接受多个参数:
      • n_components=n_topics: 设置模型中的主题数量,这里与之前定义的 n_topics 变量相等。
      • max_iter=50: 设置模型训练的最大迭代次数。
      • learning_method='online': 指定学习算法,这里使用在线学习算法。
      • learning_offset=50.: 在线学习算法中的学习偏移量。
      • random_state=0: 设置随机状态,以确保结果的可重复性。
  6. lda.fit(tf_idf)

    • 这行代码将之前转换得到的TF-IDF矩阵 tf_idf 用于训练LDA模型。fit 方法将根据文档-词项矩阵和设置的主题数量来学习文档的主题分布以及词项在各个主题下的分布。

总的来说,这段代码的目的是使用LDA模型来发现文档集合中的潜在主题。首先,它通过TF-IDF向量化器将文本数据转换为数值矩阵,然后使用这个矩阵来训练LDA模型,最后可以通过模型来分析文档的主题分布。

打印出来的结果为:

f3c8644da9304920ae8f2e2331ad532a.png 

三、结果展现 

#第1部分
# 要输出的每个主题的前 n_top_words 个主题词数
n_top_words = 50
def top_words_data_frame(model: LatentDirichletAllocation,tf_idf_vectorizer: TfidfVectorizer,n_top_words: int) -> pd.DataFrame:rows = []feature_names = tf_idf_vectorizer.get_feature_names_out()for topic in model.components_:top_words = [feature_names[i]for i in topic.argsort()[:-n_top_words - 1:-1]]rows.append(top_words)columns = [f'topic {i + 1}' for i in range(n_top_words)]df = pd.DataFrame(rows, columns=columns)return df#2
def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:matrix = model.transform(X)columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]df = pd.DataFrame(matrix, columns=columns)return df# 要输出的每个主题的前 n_top_words 个主题词数# 计算 n_top_words 个主题词
top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)# 获取五个主题的前五十个特征词
print(top_words_df)# 转 tf_idf 为数组,以便后面使用它来对文本主题概率分布进行计算
X = tf_idf.toarray()# 计算完毕主题概率分布情况
predict_df = predict_to_data_frame(lda, X)# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)

这段代码是用于分析和可视化LDA(Latent Dirichlet Allocation,隐狄利克雷分配)模型的输出结果的。以下是对代码的逐行解释:

 

这部分代码定义了两个函数,用于处理和展示LDA模型的结果。

  1. n_top_words = 50

    • 设置变量 n_top_words 为50,表示每个主题中要提取的前50个最重要的词。
  2. def top_words_data_frame(...) -> pd.DataFrame:

    • 定义了一个名为 top_words_data_frame 的函数,它接受一个LDA模型、一个TF-IDF向量化器和一个整数 n_top_words 作为参数,并返回一个包含每个主题的前 n_top_words 个词的DataFrame。
  3. rows = []

    • 初始化一个空列表 rows,用于存储每个主题的顶级词汇。
  4. feature_names = tf_idf_vectorizer.get_feature_names_out()

    • 从TF-IDF向量化器中获取词汇表,以便知道每个特征索引对应的词。
  5. for topic in model.components_:

    • 遍历LDA模型的每个主题。
  6. top_words = [feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1])

    • 对每个主题,获取其权重数组的排序索引,然后选择前 n_top_words 个索引对应的词。
  7. rows.append(top_words)

    • 将每个主题的顶级词汇列表添加到 rows 列表中。
  8. columns = [f'topic {i + 1}' for i in range(n_top_words)]

    • 创建DataFrame的列名,表示每个主题的顶级词汇。
  9. df = pd.DataFrame(rows, columns=columns)

    • 使用 rows 数据和 columns 列名创建一个DataFrame。
  10. return df

    • 返回包含每个主题顶级词汇的DataFrame。

 

这部分代码使用LDA模型对文档进行主题预测,并展示结果。

  1. def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:

    • 定义了一个名为 predict_to_data_frame 的函数,它接受一个LDA模型和一个NumPy数组 X 作为参数,并返回一个包含文档主题概率分布的DataFrame。
  2. matrix = model.transform(X)

    • 使用LDA模型的 transform 方法将文档集 X 转换为每个文档的主题概率分布矩阵。
  3. columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]

    • 创建列名,表示每个文档属于每个主题的概率。
  4. df = pd.DataFrame(matrix, columns=columns)

    • 使用转换得到的主题概率矩阵和列名创建一个DataFrame。
  5. return df

    • 返回包含文档主题概率分布的DataFrame。

 

这部分代码执行了上述定义的函数,并打印了结果。

  1. top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)

    • 调用 top_words_data_frame 函数,获取LDA模型的每个主题的前50个词。
  2. print(top_words_df)

    • 打印每个主题的前50个词。
  3. X = tf_idf.toarray()

    • 将TF-IDF矩阵转换为一个NumPy数组,以便用于主题预测。
  4. predict_df = predict_to_data_frame(lda, X)

    • 调用 predict_to_data_frame 函数,获取文档的主题概率分布。
  5. print(predict_df)

    • 打印每个文档属于每个主题的概率。

这段代码的目的是分析LDA模型的结果,展示每个主题的代表性词汇以及文档的主题概率分布,从而帮助理解文档集合中的潜在主题结构。

88f21d2d865741a38f4aadc86b88b949.png

 

四、可视化分析

# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)
import pyLDAvis
import pyLDAvis.sklearnpanel = pyLDAvis.sklearn.prepare(lda, tf_idf, tf_idf_vectorizer)
pyLDAvis.save_html(panel, 'lda_visualization.html')
pyLDAvis.display(panel)

结果展现:

24d632f02fc644db9fb9eee781e2cc46.png 

五、词云图分析

另写代码,加入停用词后,对数据内容作词云图分析:

import numpy as np
import re
import pandas as pd
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from wordcloud import WordCloud  # 导入 WordCloud 类
import matplotlib.pyplot as plt# 读取小红书评论数据
df1 = pd.read_csv('小红书评论.csv')
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))# 定义停用词列表,将你、了、的、我、你等常见词加入其中
stop_words = set(['你', '了', '的', '我', '你', '他', '她', '它','是','有','哭','都','吗','也','啊'])# 分词并过滤停用词
df1['cut'] = df1['cut'].apply(lambda x: " ".join([word for word in jieba.lcut(x) if word not in stop_words]))# 生成小红书评论的词云图
def generate_wordcloud(text):wordcloud = WordCloud(background_color='white', font_path='msyh.ttc').generate(text)plt.figure()plt.imshow(wordcloud, interpolation="bilinear")plt.title("小红书评论词云")plt.axis("off")plt.show()# 获取小红书评论的文本
all_comments_text = ' '.join(df1['cut'])# 生成词云图
generate_wordcloud(all_comments_text)

结果展现:e5fc30176bda4be4bba7d3af2eecfa49.png 

数据我在上方绑定了,需要可自取。 

 

 

 

 

 

这篇关于基于某评论的TF-IDF下的LDA主题模型分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030726

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者