基于某评论的TF-IDF下的LDA主题模型分析

2024-06-04 18:04

本文主要是介绍基于某评论的TF-IDF下的LDA主题模型分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整代码:


import numpy as np
import re
import pandas as pd
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocationdf1 = pd.read_csv('小红书评论.csv')  # 读取同目录下csv文件
# df1 = df1.drop_duplicates(subset=['用户id'])  # 获取一个id只评论一次的数据
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))  #对评论内容作清洗,只保留中文汉字,生成新的cut行
df1['cut'] = df1['cut'].apply(lambda x: " ".join(jieba.lcut(x)))  #对评论内容作分词和拼接
print(df1['cut'])
print(type(df1['cut']))# 1.构造TF-IDF
tf_idf_vectorizer = TfidfVectorizer()
tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])
# 2.特征词列表
feature_names = tf_idf_vectorizer.get_feature_names_out()
# 3.将特征矩阵转变为pandas DataFrame
matrix = tf_idf.toarray()
feature_names_df = pd.DataFrame(matrix,columns=feature_names)
print(feature_names_df)
# 所有的特征词组成列,所有的评论组成行,矩阵中的元素表示这个特征词在该评论中所占的重要性,即tf-idf值,0表示该句评论中没有该词。n_topics = 5
# 定义LDA对象
lda = LatentDirichletAllocation(n_components=n_topics,max_iter=50,learning_method='online',learning_offset=50.,random_state=0
)
# 核心,将TF-IDF矩阵放入LDA模型中
lda.fit(tf_idf)#第1部分
# 要输出的每个主题的前 n_top_words 个主题词数
n_top_words = 50
def top_words_data_frame(model: LatentDirichletAllocation,tf_idf_vectorizer: TfidfVectorizer,n_top_words: int) -> pd.DataFrame:rows = []feature_names = tf_idf_vectorizer.get_feature_names_out()for topic in model.components_:top_words = [feature_names[i]for i in topic.argsort()[:-n_top_words - 1:-1]]rows.append(top_words)columns = [f'topic {i + 1}' for i in range(n_top_words)]df = pd.DataFrame(rows, columns=columns)return df#2
def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:matrix = model.transform(X)columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]df = pd.DataFrame(matrix, columns=columns)return df# 要输出的每个主题的前 n_top_words 个主题词数# 计算 n_top_words 个主题词
top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)# 获取五个主题的前五十个特征词
print(top_words_df)# 转 tf_idf 为数组,以便后面使用它来对文本主题概率分布进行计算
X = tf_idf.toarray()# 计算完毕主题概率分布情况
predict_df = predict_to_data_frame(lda, X)# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)
import pyLDAvis
import pyLDAvis.sklearnpanel = pyLDAvis.sklearn.prepare(lda, tf_idf, tf_idf_vectorizer)
pyLDAvis.save_html(panel, 'lda_visualization.html')
pyLDAvis.display(panel)

一、数据清洗

 

代码逐行讲解:

df1 = pd.read_csv('小红书评论.csv')  # 读取同目录下csv文件
# df1 = df1.drop_duplicates(subset=['用户id'])  # 获取一个id只评论一次的数据
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))  #对评论内容作清洗,只保留中文汉字,生成新的cut行
df1['cut'] = df1['cut'].apply(lambda x: " ".join(jieba.lcut(x)))  #对评论内容作分词和拼接
print(df1['cut'])
print(type(df1['cut']))

读取同目录下的文件,df1是数据框格式

提取评论内容,并对评论内容做清洗,采用正则表达式,去除标点和英文。

用jieba对每一行的数据作分词处理,最后得到的数据展现以及数据类型。

cc395ce2626d4e26abfbe27aaf023067.png 

二、模型构建 

tf_idf_vectorizer = TfidfVectorizer()
tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])
# 2.特征词列表
feature_names = tf_idf_vectorizer.get_feature_names_out()
# 3.将特征矩阵转变为pandas DataFrame
matrix = tf_idf.toarray()
feature_names_df = pd.DataFrame(matrix,columns=feature_names)
print(feature_names_df)
# 所有的特征词组成列,所有的评论组成行,矩阵中的元素表示这个特征词在该评论中所占的重要性,即tf-idf值,0表示该句评论中没有该词。# 定义LDA对象
n_topics = 5
lda = LatentDirichletAllocation(n_components=n_topics, max_iter=50,learning_method='online',learning_offset=50.,random_state=0
)
# 核心,将TF-IDF矩阵放入LDA模型中
lda.fit(tf_idf)
  1. tf_idf_vectorizer = TfidfVectorizer()

    • 这行代码创建了一个 TfidfVectorizer 对象,这是 scikit-learn 库中的一个文本向量化工具。它将文本数据转换为TF-IDF特征矩阵,这是一种常用的文本表示形式,能够反映出文本中单词的重要性。
  2. tf_idf = tf_idf_vectorizer.fit_transform(df1['cut'])

    • 这行代码执行了两个操作:
      • fit: 根据提供的文本数据(df1['cut'])来学习词汇表和计算IDF(逆文档频率)。
      • transform: 使用学习到的词汇表和IDF来转换文本数据为TF-IDF矩阵。结果 tf_idf 是一个稀疏矩阵,其中每一行代表一个文档,每一列代表一个单词,矩阵中的值表示该单词在文档中的重要性(TF-IDF权重)。
  3. # 定义LDA对象

    • 这是一个注释行,说明接下来的代码将定义一个LDA(隐狄利克雷分配)模型对象。
  4. n_topics = 5

    • 这行代码设置了一个变量 n_topics,其值为5,表示LDA模型中的主题数量。
  5. lda = LatentDirichletAllocation( ...)

    • 这行代码创建了一个 LatentDirichletAllocation 对象,即LDA模型,用于主题建模。它接受多个参数:
      • n_components=n_topics: 设置模型中的主题数量,这里与之前定义的 n_topics 变量相等。
      • max_iter=50: 设置模型训练的最大迭代次数。
      • learning_method='online': 指定学习算法,这里使用在线学习算法。
      • learning_offset=50.: 在线学习算法中的学习偏移量。
      • random_state=0: 设置随机状态,以确保结果的可重复性。
  6. lda.fit(tf_idf)

    • 这行代码将之前转换得到的TF-IDF矩阵 tf_idf 用于训练LDA模型。fit 方法将根据文档-词项矩阵和设置的主题数量来学习文档的主题分布以及词项在各个主题下的分布。

总的来说,这段代码的目的是使用LDA模型来发现文档集合中的潜在主题。首先,它通过TF-IDF向量化器将文本数据转换为数值矩阵,然后使用这个矩阵来训练LDA模型,最后可以通过模型来分析文档的主题分布。

打印出来的结果为:

f3c8644da9304920ae8f2e2331ad532a.png 

三、结果展现 

#第1部分
# 要输出的每个主题的前 n_top_words 个主题词数
n_top_words = 50
def top_words_data_frame(model: LatentDirichletAllocation,tf_idf_vectorizer: TfidfVectorizer,n_top_words: int) -> pd.DataFrame:rows = []feature_names = tf_idf_vectorizer.get_feature_names_out()for topic in model.components_:top_words = [feature_names[i]for i in topic.argsort()[:-n_top_words - 1:-1]]rows.append(top_words)columns = [f'topic {i + 1}' for i in range(n_top_words)]df = pd.DataFrame(rows, columns=columns)return df#2
def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:matrix = model.transform(X)columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]df = pd.DataFrame(matrix, columns=columns)return df# 要输出的每个主题的前 n_top_words 个主题词数# 计算 n_top_words 个主题词
top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)# 获取五个主题的前五十个特征词
print(top_words_df)# 转 tf_idf 为数组,以便后面使用它来对文本主题概率分布进行计算
X = tf_idf.toarray()# 计算完毕主题概率分布情况
predict_df = predict_to_data_frame(lda, X)# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)

这段代码是用于分析和可视化LDA(Latent Dirichlet Allocation,隐狄利克雷分配)模型的输出结果的。以下是对代码的逐行解释:

 

这部分代码定义了两个函数,用于处理和展示LDA模型的结果。

  1. n_top_words = 50

    • 设置变量 n_top_words 为50,表示每个主题中要提取的前50个最重要的词。
  2. def top_words_data_frame(...) -> pd.DataFrame:

    • 定义了一个名为 top_words_data_frame 的函数,它接受一个LDA模型、一个TF-IDF向量化器和一个整数 n_top_words 作为参数,并返回一个包含每个主题的前 n_top_words 个词的DataFrame。
  3. rows = []

    • 初始化一个空列表 rows,用于存储每个主题的顶级词汇。
  4. feature_names = tf_idf_vectorizer.get_feature_names_out()

    • 从TF-IDF向量化器中获取词汇表,以便知道每个特征索引对应的词。
  5. for topic in model.components_:

    • 遍历LDA模型的每个主题。
  6. top_words = [feature_names[i] for i in topic.argsort()[:-n_top_words - 1:-1])

    • 对每个主题,获取其权重数组的排序索引,然后选择前 n_top_words 个索引对应的词。
  7. rows.append(top_words)

    • 将每个主题的顶级词汇列表添加到 rows 列表中。
  8. columns = [f'topic {i + 1}' for i in range(n_top_words)]

    • 创建DataFrame的列名,表示每个主题的顶级词汇。
  9. df = pd.DataFrame(rows, columns=columns)

    • 使用 rows 数据和 columns 列名创建一个DataFrame。
  10. return df

    • 返回包含每个主题顶级词汇的DataFrame。

 

这部分代码使用LDA模型对文档进行主题预测,并展示结果。

  1. def predict_to_data_frame(model: LatentDirichletAllocation, X: np.ndarray) -> pd.DataFrame:

    • 定义了一个名为 predict_to_data_frame 的函数,它接受一个LDA模型和一个NumPy数组 X 作为参数,并返回一个包含文档主题概率分布的DataFrame。
  2. matrix = model.transform(X)

    • 使用LDA模型的 transform 方法将文档集 X 转换为每个文档的主题概率分布矩阵。
  3. columns = [f'P(topic {i + 1})' for i in range(len(model.components_))]

    • 创建列名,表示每个文档属于每个主题的概率。
  4. df = pd.DataFrame(matrix, columns=columns)

    • 使用转换得到的主题概率矩阵和列名创建一个DataFrame。
  5. return df

    • 返回包含文档主题概率分布的DataFrame。

 

这部分代码执行了上述定义的函数,并打印了结果。

  1. top_words_df = top_words_data_frame(lda, tf_idf_vectorizer, n_top_words)

    • 调用 top_words_data_frame 函数,获取LDA模型的每个主题的前50个词。
  2. print(top_words_df)

    • 打印每个主题的前50个词。
  3. X = tf_idf.toarray()

    • 将TF-IDF矩阵转换为一个NumPy数组,以便用于主题预测。
  4. predict_df = predict_to_data_frame(lda, X)

    • 调用 predict_to_data_frame 函数,获取文档的主题概率分布。
  5. print(predict_df)

    • 打印每个文档属于每个主题的概率。

这段代码的目的是分析LDA模型的结果,展示每个主题的代表性词汇以及文档的主题概率分布,从而帮助理解文档集合中的潜在主题结构。

88f21d2d865741a38f4aadc86b88b949.png

 

四、可视化分析

# 获取五个主题,对于每个评论,分别属于这五个主题的概率
print(predict_df)
import pyLDAvis
import pyLDAvis.sklearnpanel = pyLDAvis.sklearn.prepare(lda, tf_idf, tf_idf_vectorizer)
pyLDAvis.save_html(panel, 'lda_visualization.html')
pyLDAvis.display(panel)

结果展现:

24d632f02fc644db9fb9eee781e2cc46.png 

五、词云图分析

另写代码,加入停用词后,对数据内容作词云图分析:

import numpy as np
import re
import pandas as pd
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from wordcloud import WordCloud  # 导入 WordCloud 类
import matplotlib.pyplot as plt# 读取小红书评论数据
df1 = pd.read_csv('小红书评论.csv')
pattern = u'[\\s\\d,.<>/?:;\'\"[\\]{}()\\|~!\t"@#$%^&*\\-_=+a-zA-Z,。\n《》、?:;“”‘’{}【】()…¥!—┄-]+'
df1['cut'] = df1['内容'].apply(lambda x: str(x))
df1['cut'] = df1['cut'].apply(lambda x: re.sub(pattern, ' ', x))# 定义停用词列表,将你、了、的、我、你等常见词加入其中
stop_words = set(['你', '了', '的', '我', '你', '他', '她', '它','是','有','哭','都','吗','也','啊'])# 分词并过滤停用词
df1['cut'] = df1['cut'].apply(lambda x: " ".join([word for word in jieba.lcut(x) if word not in stop_words]))# 生成小红书评论的词云图
def generate_wordcloud(text):wordcloud = WordCloud(background_color='white', font_path='msyh.ttc').generate(text)plt.figure()plt.imshow(wordcloud, interpolation="bilinear")plt.title("小红书评论词云")plt.axis("off")plt.show()# 获取小红书评论的文本
all_comments_text = ' '.join(df1['cut'])# 生成词云图
generate_wordcloud(all_comments_text)

结果展现:e5fc30176bda4be4bba7d3af2eecfa49.png 

数据我在上方绑定了,需要可自取。 

 

 

 

 

 

这篇关于基于某评论的TF-IDF下的LDA主题模型分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030726

相关文章

ESP32 esp-idf esp-adf环境安装及.a库创建与编译

简介 ESP32 功能丰富的 Wi-Fi & 蓝牙 MCU, 适用于多样的物联网应用。使用freertos操作系统。 ESP-IDF 官方物联网开发框架。 ESP-ADF 官方音频开发框架。 文档参照 https://espressif-docs.readthedocs-hosted.com/projects/esp-adf/zh-cn/latest/get-started/index

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

[职场] 公务员的利弊分析 #知识分享#经验分享#其他

公务员的利弊分析     公务员作为一种稳定的职业选择,一直备受人们的关注。然而,就像任何其他职业一样,公务员职位也有其利与弊。本文将对公务员的利弊进行分析,帮助读者更好地了解这一职业的特点。 利: 1. 稳定的职业:公务员职位通常具有较高的稳定性,一旦进入公务员队伍,往往可以享受到稳定的工作环境和薪资待遇。这对于那些追求稳定的人来说,是一个很大的优势。 2. 薪资福利优厚:公务员的薪资和

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

高度内卷下,企业如何通过VOC(客户之声)做好竞争分析?

VOC,即客户之声,是一种通过收集和分析客户反馈、需求和期望,来洞察市场趋势和竞争对手动态的方法。在高度内卷的市场环境下,VOC不仅能够帮助企业了解客户的真实需求,还能为企业提供宝贵的竞争情报,助力企业在竞争中占据有利地位。 那么,企业该如何通过VOC(客户之声)做好竞争分析呢?深圳天行健企业管理咨询公司解析如下: 首先,要建立完善的VOC收集机制。这包括通过线上渠道(如社交媒体、官网留言

tf.split()函数解析

API原型(TensorFlow 1.8.0): tf.split(     value,     num_or_size_splits,     axis=0,     num=None,     name='split' ) 这个函数是用来切割张量的。输入切割的张量和参数,返回切割的结果。  value传入的就是需要切割的张量。  这个函数有两种切割的方式: 以三个维度的张量为例,比如说一

OpenCompass:大模型测评工具

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factor

模型压缩综述

https://www.cnblogs.com/shixiangwan/p/9015010.html