【机器学习】基于OpenCV和TensorFlow的MobileNetV2模型的物种识别与个体相似度分析

本文主要是介绍【机器学习】基于OpenCV和TensorFlow的MobileNetV2模型的物种识别与个体相似度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在计算机视觉领域,物种识别和图像相似度比较是两个重要的研究方向。本文通过结合深度学习和图像处理技术,基于OpenCV和TensorFlow的MobileNetV2的预训练模型模,实现物种识别和个体相似度分析。本文详细介绍该实验过程并提供相关代码。


一、名词介绍

1. OpenCV

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV由英特尔公司在1999年发起,并在2000年以开源的方式发布。该库被设计为高效的计算机视觉应用程序开发工具,支持多种编程语言(如C++、Python、Java)和平台(如Windows、Linux、Mac OS、Android、iOS)。

使用OpenCV具有以下优势:

  • 开源和免费:OpenCV是完全开源和免费的,这使得开发者可以自由地使用、修改和分发。
  • 跨平台:OpenCV支持多个操作系统和平台,包括Windows、Linux、Mac OS、Android和iOS,使其在多种设备上具有广泛的适用性。
  • 丰富的功能:OpenCV提供了广泛的功能,包括图像处理、视频分析、物体检测、机器学习、计算机视觉算法等,满足了大多数计算机视觉应用的需求。
  • 大规模社区支持:OpenCV拥有一个活跃的社区,提供丰富的文档、教程和示例代码,开发者可以方便地获取支持和资源。
  • 性能优化:OpenCV对性能进行了高度优化,支持硬件加速(如GPU),能够在实时应用中高效运行。

2. TensorFlow

TensorFlow是一个由Google Brain团队开发的开源深度学习框架。它提供了全面、灵活的工具,支持构建和训练各种深度学习模型。TensorFlow支持多种平台,包括Windows、Linux、Mac OS和移动设备,并且可以利用CPU和GPU进行高效计算。

使用TensorFlow具有以下优势:

  • 灵活性和可扩展性:TensorFlow支持构建和训练各种类型的深度学习模型,从简单的线性模型到复杂的神经网络。
  • 跨平台支持:TensorFlow支持在多个平台上运行,包括桌面系统、服务器和移动设备,并且可以利用GPU和TPU进行加速。
  • 广泛的社区和生态系统:TensorFlow拥有一个庞大的社区,提供丰富的资源和支持。其生态系统包括TensorBoard(用于可视化)、TensorFlow Lite(用于移动设备)和TensorFlow Serving(用于部署)。
  • 预训练模型和模型库:TensorFlow提供了大量的预训练模型和模型库,可以方便地进行迁移学习和模型优化。

3. OpenCV与同类视库对比

下表对比了OpenCV与其他几种常见的计算机视觉库(如Dlib、SimpleCV和Scikit-Image)的特点:

特性OpenCVDlibSimpleCVScikit-Image
开源和免费
跨平台支持Windows, Linux, Mac OS, Android, iOSWindows, Linux, Mac OSWindows, Linux, Mac OSWindows, Linux, Mac OS
编程语言支持C++, Python, Java, MATLABC++, PythonPythonPython
图像处理广泛支持支持基础支持广泛支持
视频处理广泛支持不支持基础支持不支持
机器学习算法支持(集成了OpenCV ML模块)支持(内置多种机器学习算法)基础支持支持(依赖Scikit-Learn)
面部检测支持(Haar级联分类器、DNN)支持(HOG+SVM、CNN)支持基础支持(依赖外部库)
性能优化高度优化,支持硬件加速一定程度优化,部分支持硬件加速未优化一定程度优化
社区支持活跃社区,大量资源中等规模社区小规模社区中等规模社区

二、环境准备

1. 搭建python环境

为了避免和历史包版本的冲突,这里我先新建了一个新的conda环境,起名opencv。

python环境为3.8.19。
在这里插入图片描述

升级pipsetuptools,规避后面可能发生的包版本冲突等安装问题。
在这里插入图片描述


2. 安装必要的库

下面,我安装了程序依赖的必要库。因为我是边摸索边安装,所以没有一次性全部安装这些库,你可以全部浏览完本节内容后一口气安装。

用到的库及介绍:

库名称介绍
Flask一个轻量级的Web框架,用于构建Web应用程序和API。
Flask-CORS一个Flask扩展,用于处理跨域资源共享(CORS)问题,使得前端可以访问后端API。
NumPy一个用于科学计算的库,提供支持大型多维数组和矩阵的操作,以及大量的数学函数库。
OpenCV一个开源计算机视觉库,提供丰富的图像和视频处理功能。
TensorFlow一个开源的机器学习框架,用于构建和训练各种机器学习模型。
Keras高级神经网络API,运行在TensorFlow之上,用于快速构建和训练深度学习模型。
Scikit-learn一个用于机器学习的Python库,提供简单高效的数据挖掘和数据分析工具,包括各种分类、回归和聚类算法。

下面是逐步安装的步骤:

① 安装flask、numpy、opencv-python库

pip install flask numpy opencv-python

在这里插入图片描述

② 安装flask-cors库

安装这个库主要原因是解决请求flask时的跨域问题。

pip install flask-cors

在这里插入图片描述

③ 安装tensorflow、keras库

tensorflow 是常用的深度学习框架。Keras 是一个高级神经网络 API,它能够以 TensorFlow, CNTK 或者 Theano 作为后端运行。

pip install tensorflow keras

在这里插入图片描述

④ 安装scikit-learn库

scikit-learn是一个用于机器学习的Python库,提供简单高效的数据挖掘和数据分析工具,包括各种分类、回归和聚类算法。

pip install scikit-learn

在这里插入图片描述

⑤ 安装cosine_similarity库

该库用于个体相似度比较。

pip install cosine_similarity

在这里插入图片描述


三、搭建Flask服务器

1. 编写图像识别python代码

创建一个名为app.py的文件,编写如下代码:

from flask import Flask, request, jsonify
from flask_cors import CORS
import numpy as np
import cv2
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
from sklearn.metrics.pairwise import cosine_similarityapp = Flask(__name__)
CORS(app)# 加载预训练的MobileNetV2模型
model = MobileNetV2(weights='imagenet', include_top=True)def classify_image(img):img = cv2.resize(img, (224, 224))  # MobileNetV2的输入尺寸为224x224x = image.img_to_array(img)x = np.expand_dims(x, axis=0)x = preprocess_input(x)preds = model.predict(x)return decode_predictions(preds, top=1)[0][0][1], model.predict(x)  # 返回类别名称和特征向量def calculate_similarity(feature1, feature2):return cosine_similarity(feature1, feature2)[0][0]@app.route('/compare', methods=['POST'])
def compare_images():file1 = request.files['image1']file2 = request.files['image2']npimg1 = np.frombuffer(file1.read(), np.uint8)npimg2 = np.frombuffer(file2.read(), np.uint8)img1 = cv2.imdecode(npimg1, cv2.IMREAD_COLOR)img2 = cv2.imdecode(npimg2, cv2.IMREAD_COLOR)# 分类和特征提取class1, feature1 = classify_image(img1)class2, feature2 = classify_image(img2)if class1 != class2:similarity = 0.0risk_level = "低"intervention = "否"else:similarity = calculate_similarity(feature1, feature2)risk_level = "高" if similarity > 0.8 else "中" if similarity > 0.5 else "低"intervention = "是" if similarity > 0.8 else "否"return jsonify({'similarity': f'{similarity * 100:.2f}%','risk_level': risk_level,'intervention': intervention,'class1': class1,'class2': class2})if __name__ == '__main__':app.run(debug=True)

2. 运行Flask服务器

再Anaconda中启动opencv环境的终端,运行以下命令启动Flask服务器:

python app.py

在这里插入图片描述
服务器启动后,将会监听在本地的5000端口。

四、浏览器客户端调用

1. 页面前端代码实现

创建一个HTML文件(test.html),实现图片上传和结果展示功能,全部代码如下:

<!DOCTYPE html>
<html lang="zh-CN">
<head><meta charset="UTF-8"><title>图片对比</title><style>body {font-family: Arial, sans-serif;display: flex;flex-direction: column;align-items: center;margin: 0;padding: 20px;}.container {display: flex;justify-content: space-between;width: 80%;margin-bottom: 20px;}.image-box {width: 45%;border: 2px dashed #ccc;padding: 10px;text-align: center;position: relative;}.image-box img {max-width: 100%;max-height: 200px;display: none;}.image-box input {display: none;}.upload-btn {cursor: pointer;color: #007BFF;text-decoration: underline;}.loading-bar {width: 80%;height: 20px;background-color: #f3f3f3;border: 1px solid #ccc;margin-top: 10px;display: none;position: relative;}.loading-bar div {width: 0;height: 100%;background-color: #4caf50;position: absolute;animation: loading 5s linear forwards;}@keyframes loading {to {width: 100%;}}.result {display: none;margin-top: 20px;}</style>
</head>
<body><h1>图片对比</h1><div class="container"><div class="image-box" id="box1"><label for="upload1" class="upload-btn">上传图片</label><input type="file" id="upload1" accept="image/*"><img id="image1" alt="左边文本抓取图片"></div><div class="image-box" id="box2"><label for="upload2" class="upload-btn">上传图片</label><input type="file" id="upload2" accept="image/*"><img id="image2" alt="右边文本数据库图片"></div></div><button id="compare-btn">人工智能对比</button><div class="loading-bar" id="loading-bar"><div></div></div><div class="result" id="result"><p>相似百分比: <span id="similarity">0%</span></p><p>相似度: <span id="risk-level"></span></p><p>相同个体推测: <span id="intervention"></span></p><p>1种类: <span id="class1">-</span></p><p>2种类: <span id="class2">-</span></p></div><script>document.getElementById('upload1').addEventListener('change', function(event) {loadImage(event.target.files[0], 'image1', 'box1');});document.getElementById('upload2').addEventListener('change', function(event) {loadImage(event.target.files[0], 'image2', 'box2');});function loadImage(file, imgId, boxId) {const reader = new FileReader();reader.onload = function(e) {const img = document.getElementById(imgId);img.src = e.target.result;img.style.display = 'block';document.querySelector(`#${boxId} .upload-btn`).style.display = 'none';}reader.readAsDataURL(file);}document.getElementById('compare-btn').addEventListener('click', function() {const loadingBar = document.getElementById('loading-bar');const result = document.getElementById('result');const image1 = document.getElementById('upload1').files[0];const image2 = document.getElementById('upload2').files[0];if (!image1 || !image2) {alert('请上传两张图片进行对比');return;}const formData = new FormData();formData.append('image1', image1);formData.append('image2', image2);loadingBar.style.display = 'block';result.style.display = 'none';fetch('http://localhost:5000/compare', {method: 'POST',body: formData}).then(response => response.json()).then(data => {loadingBar.style.display = 'none';result.style.display = 'block';document.getElementById('similarity').innerText = data.similarity;document.getElementById('risk-level').innerText = data.risk_level;document.getElementById('intervention').innerText = data.intervention;document.getElementById('class1').innerText = data.class1;document.getElementById('class2').innerText = data.class2;}).catch(error => {loadingBar.style.display = 'none';alert('对比过程中发生错误,请重试');console.error('Error:', error);});});</script>
</body>
</html>

2. 运行网页

双击运行,刚刚创建的test.html文件,效果如图:
在这里插入图片描述
上传左右图片,点击对比:
在这里插入图片描述

可以看到两只品种明显不同的狗相似度为0。

再比较两只相同品种的狗的相似度:
在这里插入图片描述

可以看到系统识别出了两只狗的种类相同,相似比也高达75.2%,但因为没有达到我们设置的80%的阈值,所以判断非同一个体。当然,这里的80%非常牵强,实际操作中难免误差较大。由于本文算法使用的是MobileNetV2预训练模型,并没有根据实际应用场景大量训练和调参,所以如果投入应用,仍需重新训练并根据实际效果定义阈值。

同一物种的识别结果:
在这里插入图片描述


五、实验总结

本文介绍了基于OpenCV和深度学习的物种识别和个体相似度比较方法。通过使用预训练的MobileNetV2模型进行特征提取和分类,并结合余弦相似度计算,实现了物种识别和相似度比较。此方法在计算机视觉领域具有广泛的应用前景,可以用于各种图像识别和比较任务。

通过本文的示例代码,你可以快速搭建一个图像识别和比较系统,并根据需要进行进一步的优化和扩展。如果在实现过程中遇到问题,请随时联系我获取更多帮助。

这篇关于【机器学习】基于OpenCV和TensorFlow的MobileNetV2模型的物种识别与个体相似度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025256

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结