【scikit-learn010】sklearn算法模型清单实战及经验总结(已更新)

本文主要是介绍【scikit-learn010】sklearn算法模型清单实战及经验总结(已更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.一直以来想写下基于scikit-learn训练AI算法的系列文章,作为较火的机器学习框架,也是日常项目开发中常用的一款工具,最近刚好挤时间梳理、总结下这块儿的知识体系。
2.熟悉、梳理、总结下scikit-learn框架模型算法包相关技术点及经验。
3.欢迎批评指正,欢迎互三,跪谢一键三连!
4.欢迎批评指正,欢迎互三,跪谢一键三连!
5.欢迎批评指正,欢迎互三,跪谢一键三连!

文章目录

    • 1.环境前置说明
    • 2.`sklearn`算法类型及常用总结
      • 2.1 `sklearn`算法模型参考清单
      • 2.2 `sklearn`算法模型模块函数总结清单
    • 3.参考链接

1.环境前置说明

  • 版本信息
    import sklearn
    sklearn.show_versions()==============================================================================
    System:python: 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 64 bit (AMD64)]
    executable: ..\Anaconda3\python.exemachine: Windows-10-10.0.19041-SP0Python dependencies:pip: 24.0setuptools: 68.0.0sklearn: 0.24.1numpy: 1.21.6scipy: 1.1.0Cython: 0.29.28pandas: 1.1.5matplotlib: 2.2.3joblib: 1.3.2
    threadpoolctl: 3.1.0Built with OpenMP: True
    ==============================================================================
    

2.sklearn算法类型及常用总结

  • 下图是网友总结的很nice的图,这里引用参考下。
    在这里插入图片描述

2.1 sklearn算法模型参考清单

  • 在这里插入图片描述
  • 可CV表格文本
    序号功能作用算法名称算法类型有无监督应用场景经验总结
    1识别某个对象属于哪个类别K近邻算法(K-Nearest Neighbors, KNN)基于实例的学习方法,用于分类和回归垃圾邮件检测,图像识别用于分类和回归问题,通过找到训练数据集中与新数据点最相似的k个样本,并根据这些样本的标签进行预测。
    2识别某个对象属于哪个类别随机森林(Random Forest)用于分类和回归问题监督学习算法垃圾邮件检测,图像识别
    3识别某个对象属于哪个类别逻辑回归(Logistic Regression)二分类垃圾邮件检测,图像识别
    4识别

这篇关于【scikit-learn010】sklearn算法模型清单实战及经验总结(已更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024541

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时