人体头像面部的二维主成分分析(2D PCA)

2024-05-30 05:58

本文主要是介绍人体头像面部的二维主成分分析(2D PCA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

刚开始写博客,如果有什么不对的地方,请大家帮忙指出,谢谢!微笑

二维PCA介绍

在前一篇文章《PCA算法:从一组照片中获取特征脸(特征向量)》中,介绍了对人像进行一维PCA处理的过程及结果,并提取显示了特征脸。在后续应用中可以使用特征脸空间来表示人像,是数据从m*n(图片尺寸为m*n)的大小缩减到了p(p为选取的前p个特征脸)。再进行人脸识别、检测的时候只需要处理明显的特征,并且具有数据量大大减小,便于处理等好处。

PCA方法作为一种图像统计处理方法,平等地对待所有点,角度、光照、尺寸及表情的变化会导致识别率急剧下降。其次人脸在人脸空间的分布近似高斯分布,普通人脸靠近均值附近,难以识别。PCA具有好的表达能力,但是区分能力不足。其次,PCA将样本转化为一行,生成一个q行m*n列的矩阵(q为样本数),计算变得复杂。

近年来发展了很多对PCA的改进方法,2DPCA(2-dimensional principal component analysis)就是其中一种。

二维PCA基本思想

本节直接截取武汉理工大学齐兴敏硕士的论文《基于PCA的人脸识别技术的研究》(链接)的内容。


二维PCA实现过程

// PCA_2D.cpp : 定义控制台应用程序的入口点。
// by dhj555 572694157@qq.com
// ZJU University#include "stdafx.h"
#include <string>
#include <strstream>
#include <opencv2\opencv.hpp>
using namespace std;
using namespace cv;vector<Mat> loadImages();
double* matrix_mul(int* mat1, int m, int n, int* mat2, int k);
int* matrix_trans(int* mat, int m, int n);
double myDot(Mat mat1, Mat mat2);int _tmain(int argc, _TCHAR* argv[])
{//Mat mat = Mat(5, 5, CV_64FC1,0.0);//Mat lie = Mat(5, 1, CV_8UC1);//lie.at<uchar>(0) = 0;//lie.at<uchar>(1) = 1;//lie.at<uchar>(2) = 2;//lie.at<uchar>(3) = 3;//lie.at<uchar>(4) = 4;//mat.col(3) = lie;//Mat lie2 = mat.col(3);//cout << lie2.dot(lie);//cout << lie;//cout << mat;//1、定义变量int num_sample = 38;	//样本数量int num_eigen = 15;		//投影和重构使用的前num_eigen个特征向量int norm_row = 64, norm_col = 56;	//样本图像的尺寸vector<Mat> imgs = loadImages();	//所有样本图像Mat mean_face = Mat(norm_row, norm_col, CV_8UC1);	//平均脸vector<int> mean_face_total;mean_face_total.resize(norm_row * norm_col);//2、计算平均脸for (int n = 0; n < num_sample; n++){for (int i = 0; i < norm_row; i++){for (int j = 0; j < norm_col; j++){int index = i*norm_col + j;mean_face_total.at(index) += ((imgs.at(n))).at<uchar>(index);}}}for (int j = 0; j < norm_row * norm_col; j++){mean_face.at<uchar>(j) = (uchar)(mean_face_total.at(j) / num_sample);}//3、计算协方差矩阵Mat covar_matrix = Mat(norm_col, norm_col, CV_64FC1, 0.0);for (int n = 0; n < num_sample; n++){Mat img = Mat(norm_row, norm_col, CV_64FC1);for (int i = 0; i < norm_row*norm_col; i++)img.at<double>(i) = ((double)imgs.at(n).at<uchar>(i)) - ((double)mean_face.at<uchar>(i));covar_matrix = covar_matrix + (img.t()*img) / num_sample;}//4、计算特征值和特征向量Mat eValuesMat;		//特征值,从大大小排列Mat eVectorsMat;	//特征向量,按行排列,按照对应特征值的大小eigen(covar_matrix, eValuesMat, eVectorsMat);//5、投影到特征向量空间,并重构for (int n = 0; n < num_sample; n++){Mat origin_img_uchar = imgs.at(n);		//原图像Mat origin_img = Mat(norm_row, norm_col, CV_64FC1, 0.0);for (int index = 0; index < norm_row*norm_col; index++)origin_img.at<double>(index) = (double)origin_img_uchar.at<uchar>(index);Mat preject_mat = Mat(norm_row, num_eigen, CV_64FC1, 0.0);	//投影矩阵for (int i = 0; i < num_eigen; i++){for (int p = 0; p < norm_row; p++){Mat row1 = origin_img.row(p);Mat row2 = eVectorsMat.row(i);double res = row1.dot(row2);preject_mat.at<double>(p*num_eigen + i) = res;}//preject_mat.col(i) = origin_img*(eVectorsMat.row(i).t());}Mat recons_mat = Mat(norm_row, norm_col, CV_64FC1, 0.0);		//重构for (int j = 0; j < num_eigen; j++){recons_mat = recons_mat + (preject_mat.col(j))*(eVectorsMat.row(j));}float min = LLONG_MAX, max = LLONG_MIN, span = 0.0;for (int index = 0; index < norm_col*norm_row; index++){float d = recons_mat.at<double>(index);if (d>max)max = d;if (d < min)min = d;}span = max - min;Mat recon_face = Mat(norm_row, norm_col, CV_8UC1);for (int index = 0; index < norm_row*norm_col; index++){float d = recons_mat.at<double>(index);recon_face.at<uchar>(index) = (d - min) / span * 255.0;}Mat diff_face = Mat(norm_row, norm_col, CV_8UC1);//vector<float> diffs;//diffs.resize(norm_row*norm_col);for (int index = 0; index < norm_row*norm_col; index++){double origin_d = origin_img.at<double>(index);double recon_d = recons_mat.at<double>(index);//diffs.at(index) = origin_d - recon_d;diff_face.at<uchar>(index) = origin_d + 127 - recon_d;}char buffer[128];sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/PCA2D/1/1-000%dorgin.jpg", n);string orgin_ImgPath(buffer);sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/PCA2D/1/1-000%drecon.jpg", n);string recon_ImgPath(buffer);sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/PCA2D/1/1-000%ddiff.jpg", n);string diff_ImgPath(buffer);printf("%d st:\t%f\n", n, eValuesMat.at<double>(n));imwrite(orgin_ImgPath, origin_img);imwrite(recon_ImgPath, recons_mat);imwrite(diff_ImgPath, diff_face);}cout << "\n" << eVectorsMat;waitKey(0);return 0;
}vector<Mat> loadImages()
{vector<Mat> all_imgs;for (int i = 0; i < 38; i++){char buffer[128];sprintf_s(buffer, "C:/Users/dhj555/Desktop/YelaFaces/%d/%d-0001.jpg", i + 1, i + 1);string imgPath(buffer);Mat origin_img = imread(imgPath, CV_LOAD_IMAGE_GRAYSCALE);Mat img = Mat(64, 56, CV_8UC1);resize(origin_img, img, Size(56, 64));all_imgs.push_back(img);}return all_imgs;
}double myDot(Mat mat1, Mat mat2)
{double res = 0.0;if (mat1.cols == 1 && mat2.cols == 1 && mat1.rows == mat2.rows){for (int i = 0; i < mat1.rows; i++)res += mat1.at<double>(i)*mat2.at<double>(i);return res;}if (mat1.rows == 1 && mat2.rows == 1 && mat1.cols == mat2.cols){for (int i = 0; i < mat1.cols; i++)res += mat1.at<double>(i)*mat2.at<double>(i);return res;}return res;
}

二维PCA图片重构实验结果

此处列举5组实验结果。

注:

<span style="white-space:pre">	</span>double origin_d = origin_img.at<double>(index);double recon_d = recons_mat.at<double>(index);diff_face.at<uchar>(index) = origin_d + 127 - recon_d;
<span style="white-space:pre">	</span>由于使用了uchar表示像素灰度,直接相减可能出现负值,但是uchar不能表示复数,所以加上了127。

原始图像重构图像差异图像
求得的特征值:

0 st:   2160549.032902
1 st:   452443.355672
2 st:   269018.469038
3 st:   165124.140552
4 st:   106610.785769
5 st:   89444.567562
6 st:   73015.552536
7 st:   63570.818226
8 st:   39627.906668
9 st:   38556.676027
10 st:  36000.282860
11 st:  33237.237388
12 st:  25777.377389
13 st:  25500.496538
14 st:  22803.806736
15 st:  21003.406909
16 st:  19098.320455
17 st:  17029.164552
18 st:  15863.203747
19 st:  13805.013111
20 st:  13136.374819
21 st:  12094.863309
22 st:  10604.307490
23 st:  9949.116257
24 st:  8720.810884
25 st:  8338.006774
26 st:  7937.054498
27 st:  7164.202648
28 st:  6632.291813
29 st:  6019.611097
30 st:  5137.939391
31 st:  4889.753865
32 st:  4727.662225
33 st:  4287.633124
34 st:  3985.294864
35 st:  3955.256511
36 st:  3638.502077
37 st:  3460.752888

这篇关于人体头像面部的二维主成分分析(2D PCA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015754

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

HDU 2159 二维完全背包

FATE 最近xhd正在玩一款叫做FATE的游戏,为了得到极品装备,xhd在不停的杀怪做任务。久而久之xhd开始对杀怪产生的厌恶感,但又不得不通过杀怪来升完这最后一级。现在的问题是,xhd升掉最后一级还需n的经验值,xhd还留有m的忍耐度,每杀一个怪xhd会得到相应的经验,并减掉相应的忍耐度。当忍耐度降到0或者0以下时,xhd就不会玩这游戏。xhd还说了他最多只杀s只怪。请问他能

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断