深入解读Meta分析:原理、公式、操作步骤及结果分析;R语言Meta回归分析、诊断分析、不确定性分析与精美作图

本文主要是介绍深入解读Meta分析:原理、公式、操作步骤及结果分析;R语言Meta回归分析、诊断分析、不确定性分析与精美作图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

专题一 Meta分析的选题与文献计量分析CiteSpace应用

专题二 Meta分析与R语言数据清洗及相关应用

专题三 R语言Meta分析与精美作图

专题四 R语言Meta回归分析

专题五 R语言Meta诊断分析与进阶

专题六 R语言Meta分析的不确定性及贝叶斯应用

专题七 深度拓展机器学习在Meta分析中的应用

更多应用


Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。R语言拥有完整有效的数据处理、统计分析与保存机制,可以对数据直接进行分析和显示,命令格式简单、结果可读性强,包含众多针对Meta分析软件包,是进行Meta整合分析及评价的有效平台。

本教程针对Meta分析原理、公式、操作步骤及结果分析,进阶应用进行详细解析,结合多个例子,熟练掌握Meta分析全流程和不确定性分析,并结合机器学习等方法讲解Meta分析在文献大数据的延伸应用。

专题一 Meta分析的选题与文献计量分析CiteSpace应用

1.Meta分析的选题与文献检索
①什么是Meta分析
②Meta分析的选题策略
③文献检索数据库
④精确检索策略,如何检索全、检索准
⑤文献的管理与清洗,如何制定文献纳入排除标准
⑥文献数据获取技巧
⑦文献计量分析CiteSpace及研究热点分析

专题二 Meta分析与R语言数据清洗及相关应用

2.Meta分析的常用软件与R语言应用
①R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用
②R语言基本操作
③R语言数据清洗方法
④R语言Meta分析常用包及相关插件讲解与实践
从自编程计算到调用Meta包(meta、metafor、dmetar、esc、metasens、metamisc、meta4diag、gemtc、robvis、netmeta、brms等),全程分析如何进行meta计算、meta诊断、贝叶斯meta、网状meta、亚组分析、meta回归及作图

专题三 R语言Meta分析与精美作图

3.R语言Meta分析
①R语言Meta分析的流程
②各类meta效应值和累计效应值计算
连续资料的RR、MD与SMD;分类资料的RR和OR
③Meta亚组分析
④R语言图形可视化方法
⑤如何用ggplot2绘制漂亮的森林图

专题四 R语言Meta回归分析

4.R语言Meta回归分析
①Meta回归统计分析理论及应用
②Meta回归和普通回归分析的异同
③固定效应与随机效应分析
④泡泡图(bubble)的绘制

专题五 R语言Meta诊断分析与进阶

5.R语言Meta诊断进阶
①Meta诊断分析(t2、I2、H2、Q等统计量)
②异质性检验
③敏感性分析
④偏倚分析
⑤风险分析

专题六 R语言Meta分析的不确定性及贝叶斯应用

6.R语言Meta分析的不确定性
①网状Meta分析
②贝叶斯理论
③R语言贝叶斯工具Stan、JAGS和brms
④贝叶斯Meta分析及不确定性分析

专题七 深度拓展机器学习在Meta分析中的应用

7.机器学习在Meta分析中的应用
⑤机器学习基础以及Meta机器学习的优势
⑥Meta加权随机森林(MetaForest)的使用
⑦使用Meta机器学习对文献中的大数据进行整合
⑧使用机器学习进行驱动因子分析

注:请提前自备电脑及安装所需软件


更多应用

ChatGPT4.0最新功能和使用技巧,助力日常生活、学习与工作!_chatgpt4o如何使用-CSDN博客文章浏览阅读698次,点赞9次,收藏17次。熟练掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,系统学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,同时掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。_chatgpt4o如何使用https://blog.csdn.net/WangYan2022/article/details/139134786?spm=1001.2014.3001.5502深入解析R语言的贝叶斯网络模型:构建、优化与预测;INLA下的贝叶斯回归;现代贝叶斯统计学方法;R语言混合效应(多水平/层次/嵌套)_r语言贝叶斯层次模型-CSDN博客文章浏览阅读752次,点赞26次,收藏18次。贝叶斯网络是一种结合图论与统计学理论提出的新型模型。贝叶斯网络不但能够统合已有的各种统计学方法,如混合回归模型,LASSO,自回归模型,隐马模型等等;而且在很大程度上能够弥补统计学模型不能够进行因果推断的缺憾。_r语言贝叶斯层次模型https://blog.csdn.net/weixin_46747075/article/details/139164845?spm=1001.2014.3001.5502生态环境数据分析新篇章:Meta分析、R语言、Matlab、贝叶斯、结构方程模型等的前沿实践_环保数据分析与matlab应用-CSDN博客文章浏览阅读1.1k次,点赞26次,收藏27次。R语言作为新兴的统计软件,以开源、自由、免费等特点风靡全球。生态环境领域研究内容广泛,数据常多样而复杂。利用R语言进行多元统计分析,从复杂的现象中发现规律、探索机制正是R的优势。_环保数据分析与matlab应用https://blog.csdn.net/weixin_46747075/article/details/136389570?spm=1001.2014.3001.5502★关 注【科研充电吧】公 众 号,获取海量教程和资源

这篇关于深入解读Meta分析:原理、公式、操作步骤及结果分析;R语言Meta回归分析、诊断分析、不确定性分析与精美作图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1014034

相关文章

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝