clip_grad_norm_ 梯度裁剪

2024-05-29 03:52
文章标签 裁剪 norm 梯度 clip grad

本文主要是介绍clip_grad_norm_ 梯度裁剪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torch.nn.utils.clip_grad_norm_ 函数是用来对模型的梯度进行裁剪的。在深度学习中,经常会使用梯度下降算法来更新模型的参数,以最小化损失函数。然而,在训练过程中,梯度可能会变得非常大,这可能导致训练不稳定甚至梯度爆炸的情况。

裁剪梯度的作用是限制梯度的大小,防止它们变得过大。裁剪梯度的常见方式是通过计算梯度的范数(即梯度向量的长度),如果梯度的范数超过了设定的阈值,则对梯度向量进行缩放,使其范数等于阈值。

torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)  

对模型的参数的梯度进行裁剪,限制其范数为1.0。这有助于防止梯度爆炸,提高训练的稳定性

深层神经网络 中常用,避免梯度爆炸

这篇关于clip_grad_norm_ 梯度裁剪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1012574

相关文章

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

通用内存快照裁剪压缩库Tailor介绍及源码分析(一)

背景 我们知道内存快照是治理 OOM 问题及其他类型的内存问题的重要数据源,内存快照中保存了进程虚拟机的完整的堆内存数据,很多时候也是调查其他类型异常的重要参考。但是dump出来的堆转储文件.hprof往往很大,以 LargeHeap 应用为例,其 OOM 时的内存快照大小通常在512M左右,要有效的存储和获取都是一个问题。 线下拿到hprof文件相对容易,也可以预防OOM,但覆盖的场景十分有

Windows11电脑上自带的画图软件修改照片大小(不裁剪尺寸的情况下)

针对一张图片,有时候上传的图片有大小限制,那么在这种情况下如何修改其大小呢,在不裁剪尺寸的情况下 步骤如下: 1.选定一张图片,右击->打开方式->画图,如下: 第二步:打开图片后,我们可以看到图片的大小为82.1kb,点击上面工具栏的“重设大小和倾斜”进行调整,如下: 第三步:修改水平和垂直的数字,此处我修改为分别都修改为50,然后保存,可以看到大小变成63.5kb,如下:

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

什么是GPT-3的自回归架构?为什么GPT-3无需梯度更新和微调

文章目录 知识回顾GPT-3的自回归架构何为自回归架构为什么架构会影响任务表现自回归架构的局限性与双向模型的对比小结 为何无需梯度更新和微调为什么不需要怎么做到不需要 🍃作者介绍:双非本科大四网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发,目前开始人工智能领域相关知识的学习 🦅个人主页:@逐梦苍穹 📕所属专栏:人工智能 🌻gitee地址:x

【python 图像切割】matplotlib读取图像,裁剪图像

#-*-coding:utf-8-*-import sysreload(sys)sys.setdefaultencoding('utf-8')import matplotlib.pylab as plt# 加载图像im = plt.imread("E:/ID/2.png")print(im.shape)# (y轴像素点数, x轴像素点数,图像通道数)def plti(im, **kw

分布式训练同步梯度出现形状不一致的解决方案

1、问题描述           为了加快大模型的训练速度,采用了分布式训练策略,基于MultiWorkerServerStrategy模式,集群之间采用Ring—Reduce的通信机制,不同节点在同步梯度会借助collective_ops.all_gather方法将梯度进行汇聚收集,汇聚过程出现了: allreduce_1/CollectiveGather_1 Inconsitent out

【HarmonyOS】头像圆形裁剪功能之手势放大缩小,平移,双击缩放控制(三)

【HarmonyOS】头像裁剪之手势放大缩小,平移,双击缩放控制(三) 一、DEMO效果图: 二、开发思路: 使用矩阵变换控制图片的放大缩小和平移形态。 通过监听点击手势TapGesture,缩放手势PinchGesture,拖动手势PanGesture进行手势操作的功能实现。 通过对矩阵变换参数mMatrix的赋值,将矩阵变换参数赋值给image控件。实现手势操作和图片操作的同步。

ACL22--基于CLIP的非代表性新闻图像的多模态检测

摘要 这项研究调查了假新闻如何使用新闻文章的缩略图,重点关注新闻文章的缩略图是否正确代表了新闻内容。在社交媒体环境中,如果一篇新闻文章与一个不相关的缩略图一起分享,可能会误导读者对问题产生错误的印象,尤其是用户不太可能点击链接并消费整个内容的情况下。我们提议使用预训练的CLIP(Contrastive Language-Image Pretraining)表示来捕捉多模态关系中语义不一致的程度。