数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现

本文主要是介绍数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 1 基本原理
      • 2 代码实现
      • 3 分岔图代码实现



1 基本原理

参考:维基百科 - 逻辑斯谛映射

逻辑斯谛映射(Logistic Map)是一种二次多项式的映射递推关系式,是一个由简单非线性方程式产生混沌现象的经典范例。其数学表达为:
x n + 1 = μ x n ( 1 − x n ) x_{n+1}=\mu x_n(1-x_n) xn+1=μxn(1xn)
其中,参数 μ \mu μ 通常取 ( 0 , 4 ] (0, 4] (0,4] 区间内的值,因此 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界。

个人理解:可以把 x n x_n xn 看作是变量 X X X 在第 n n n 时刻的值,把 x n + 1 x_{n+1} xn+1 看作是变量 X X X 在第 n + 1 n+1 n+1 时刻的值。根据上述公式可知, x n + 1 x_{n+1} xn+1 的值是根据 x n x_n xn 的值计算出来的,即当前时刻的值是由上一时刻的值计算而来的,因此被称为递推关系式。

针对 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界,参考下图:

在这里插入图片描述

个人理解:如果初值 x 0 x_0 x0 的值在 0 0 0 1 1 1 之间,那么根据二次函数的表达式, x n x_n xn 的值也必定在 0 0 0 1 1 1 之间。因此,我们说 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界。




参数 μ \mu μ 的取值

  • 0 0 0 1 1 1 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 会越来越少,最后趋近于 0 0 0
  • 1 1 1 2 2 2 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 会快速地趋近 μ − 1 μ \frac{\mu-1}{\mu} μμ1
  • 2 2 2 3 3 3 之间:经过几次迭代, x n x_n xn 会越来越接近 μ − 1 μ \frac{\mu-1}{\mu} μμ1,而且收敛速度是线性的;
  • 3 3 3 x n x_n xn 仍然会越来越接近 μ − 1 μ \frac{\mu-1}{\mu} μμ1,但收敛速度较为缓慢,而且不是线性的;

个人理解:迭代次数就是指 x n + 1 = μ x n ( 1 − x n ) x_{n+1}=\mu x_n(1-x_n) xn+1=μxn(1xn) 计算了多少次,即 x n + 1 x_{n+1} xn+1 是初值 x 0 x_0 x0 迭代 n + 1 n+1 n+1 次的结果。

在这里插入图片描述

说明:由于散点图中的点粘在一起,看不出值的变化,因此我画的是折线图。但需要注意的是, x n + 1 x_{n+1} xn+1 的取值只会是一个个的点,而不包含图中的直线。

  • 3 3 3 1 + 6 ≈ 3.45 1+\sqrt{6}\approx3.45 1+6 3.45 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 最终会在 2 2 2 个值之间持续震荡;
  • 1 + 6 ≈ 3.45 1+\sqrt{6}\approx3.45 1+6 3.45 ≈ 3.54 \approx3.54 3.54 之间: x n x_n xn 最终会在 8 , 16 , 32 , . . . 8,16,32,... 8,16,32,... 个值之间持续震荡;
  • ≈ 3.5699 \approx3.5699 3.5699:震荡消失,系统进入混沌状态。不论起始数值 x 0 x_0 x0 为何,都不会再出现固定周期的震荡;

在这里插入图片描述

可以看出 μ \mu μ 越大, x n x_{n} xn 的震荡越没有周期性。



2 代码实现

参考:https://www.jianshu.com/p/580e36a34378

控制参数 μ \mu μ 的值不变,迭代 100 100 100 次,观察这 100 100 100 次中 x n x_{n} xn 值的变化:

import matplotlib.pyplot as plt
import numpy as npn = 1  # 控制迭代次数
x = 0.2  # 初值
mu = 2  # 参数μnum = []  # 存放x轴坐标
logistic_num = []  # 存放y轴坐标while n < 100:x = mu * x * (1.0 - x)  # 计算x_{n+1}的值num.append(n)  # 纳入该点的x轴坐标logistic_num.append(x)  # 纳入该点的y轴坐标n = n + 1# 画图
plt.plot(num, logistic_num, linestyle='-', linewidth=1.0)
plt.ylim(0, 1)
plt.yticks(np.arange(0, 1.2, 0.2))plt.savefig('{mu}.jpg'.format(mu=mu), dpi=400, bbox_inches='tight')
plt.show()

前文的两张图就是用这段代码绘制的。



3 分岔图代码实现

参考:https://blog.csdn.net/laplacebh/article/details/104598545

为参数 μ \mu μ 设置不同的值,迭代 1100 1100 1100 次,观察 1000 1000 1000 1100 1100 1100 次中 x n x_{n} xn 值的变化:

import matplotlib.pyplot as plt
import numpy as npdef logistic_map():mu = np.arange(2, 4, 0.0001)print(mu)  # [2.     2.0001 2.0002 ... 3.9997 3.9998 3.9999]x = 0.2  # 初值t1 = 1000  # 前1000次t2 = 100  # 后100次for i in range(t1 + t2):x = mu * x * (1 - x)if i >= t1:  # 只绘制1000~1100次的结果plt.plot(mu, x, ',k', alpha=0.25)plt.show()logistic_map()

由于我们想要观察的是 x n x_n xn 最终收敛或者未收敛的值,因此虽然做了 1100 1100 1100 次的迭代,但是我们只会绘制最后 100 100 100 x n ( x 1000 , . . . , x 1100 ) x_n(x_{1000},...,x_{1100}) xn(x1000,...,x1100) 的值。

效果如下图所示:

在这里插入图片描述
个人理解:

μ \mu μ 2 2 2 3 3 3 之间时,由于 x n x_n xn 最终会收敛到一个固定的值上,因此迭代 1000 1000 1000 1100 1100 1100 次之间的 x n x_n xn 值相同,汇聚在了上图中的一个点上。当 μ \mu μ 3 3 3 ≈ 3.45 \approx3.45 3.45 之间时,由于 x n x_n xn 最终会在 2 2 2 个值之间震荡,因此汇聚在了上图中的两个点上。

在这里插入图片描述

我们也可以反过来看,即根据结果推测原因。当 μ \mu μ ≈ 3.45 \approx3.45 3.45 ≈ 3.54 \approx3.54 3.54 之间时,由于 x n x_n xn 的值汇聚在了上图中的四个点上,因此可以看出 x n x_n xn 最终会在 4 4 4 个值之间震荡。



这篇关于数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010686

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n