数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现

本文主要是介绍数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 1 基本原理
      • 2 代码实现
      • 3 分岔图代码实现



1 基本原理

参考:维基百科 - 逻辑斯谛映射

逻辑斯谛映射(Logistic Map)是一种二次多项式的映射递推关系式,是一个由简单非线性方程式产生混沌现象的经典范例。其数学表达为:
x n + 1 = μ x n ( 1 − x n ) x_{n+1}=\mu x_n(1-x_n) xn+1=μxn(1xn)
其中,参数 μ \mu μ 通常取 ( 0 , 4 ] (0, 4] (0,4] 区间内的值,因此 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界。

个人理解:可以把 x n x_n xn 看作是变量 X X X 在第 n n n 时刻的值,把 x n + 1 x_{n+1} xn+1 看作是变量 X X X 在第 n + 1 n+1 n+1 时刻的值。根据上述公式可知, x n + 1 x_{n+1} xn+1 的值是根据 x n x_n xn 的值计算出来的,即当前时刻的值是由上一时刻的值计算而来的,因此被称为递推关系式。

针对 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界,参考下图:

在这里插入图片描述

个人理解:如果初值 x 0 x_0 x0 的值在 0 0 0 1 1 1 之间,那么根据二次函数的表达式, x n x_n xn 的值也必定在 0 0 0 1 1 1 之间。因此,我们说 x n x_n xn [ 0 , 1 ] [0, 1] [0,1] 上保持有界。




参数 μ \mu μ 的取值

  • 0 0 0 1 1 1 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 会越来越少,最后趋近于 0 0 0
  • 1 1 1 2 2 2 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 会快速地趋近 μ − 1 μ \frac{\mu-1}{\mu} μμ1
  • 2 2 2 3 3 3 之间:经过几次迭代, x n x_n xn 会越来越接近 μ − 1 μ \frac{\mu-1}{\mu} μμ1,而且收敛速度是线性的;
  • 3 3 3 x n x_n xn 仍然会越来越接近 μ − 1 μ \frac{\mu-1}{\mu} μμ1,但收敛速度较为缓慢,而且不是线性的;

个人理解:迭代次数就是指 x n + 1 = μ x n ( 1 − x n ) x_{n+1}=\mu x_n(1-x_n) xn+1=μxn(1xn) 计算了多少次,即 x n + 1 x_{n+1} xn+1 是初值 x 0 x_0 x0 迭代 n + 1 n+1 n+1 次的结果。

在这里插入图片描述

说明:由于散点图中的点粘在一起,看不出值的变化,因此我画的是折线图。但需要注意的是, x n + 1 x_{n+1} xn+1 的取值只会是一个个的点,而不包含图中的直线。

  • 3 3 3 1 + 6 ≈ 3.45 1+\sqrt{6}\approx3.45 1+6 3.45 之间:不论起始数值 x 0 x_0 x0 为何, x n x_n xn 最终会在 2 2 2 个值之间持续震荡;
  • 1 + 6 ≈ 3.45 1+\sqrt{6}\approx3.45 1+6 3.45 ≈ 3.54 \approx3.54 3.54 之间: x n x_n xn 最终会在 8 , 16 , 32 , . . . 8,16,32,... 8,16,32,... 个值之间持续震荡;
  • ≈ 3.5699 \approx3.5699 3.5699:震荡消失,系统进入混沌状态。不论起始数值 x 0 x_0 x0 为何,都不会再出现固定周期的震荡;

在这里插入图片描述

可以看出 μ \mu μ 越大, x n x_{n} xn 的震荡越没有周期性。



2 代码实现

参考:https://www.jianshu.com/p/580e36a34378

控制参数 μ \mu μ 的值不变,迭代 100 100 100 次,观察这 100 100 100 次中 x n x_{n} xn 值的变化:

import matplotlib.pyplot as plt
import numpy as npn = 1  # 控制迭代次数
x = 0.2  # 初值
mu = 2  # 参数μnum = []  # 存放x轴坐标
logistic_num = []  # 存放y轴坐标while n < 100:x = mu * x * (1.0 - x)  # 计算x_{n+1}的值num.append(n)  # 纳入该点的x轴坐标logistic_num.append(x)  # 纳入该点的y轴坐标n = n + 1# 画图
plt.plot(num, logistic_num, linestyle='-', linewidth=1.0)
plt.ylim(0, 1)
plt.yticks(np.arange(0, 1.2, 0.2))plt.savefig('{mu}.jpg'.format(mu=mu), dpi=400, bbox_inches='tight')
plt.show()

前文的两张图就是用这段代码绘制的。



3 分岔图代码实现

参考:https://blog.csdn.net/laplacebh/article/details/104598545

为参数 μ \mu μ 设置不同的值,迭代 1100 1100 1100 次,观察 1000 1000 1000 1100 1100 1100 次中 x n x_{n} xn 值的变化:

import matplotlib.pyplot as plt
import numpy as npdef logistic_map():mu = np.arange(2, 4, 0.0001)print(mu)  # [2.     2.0001 2.0002 ... 3.9997 3.9998 3.9999]x = 0.2  # 初值t1 = 1000  # 前1000次t2 = 100  # 后100次for i in range(t1 + t2):x = mu * x * (1 - x)if i >= t1:  # 只绘制1000~1100次的结果plt.plot(mu, x, ',k', alpha=0.25)plt.show()logistic_map()

由于我们想要观察的是 x n x_n xn 最终收敛或者未收敛的值,因此虽然做了 1100 1100 1100 次的迭代,但是我们只会绘制最后 100 100 100 x n ( x 1000 , . . . , x 1100 ) x_n(x_{1000},...,x_{1100}) xn(x1000,...,x1100) 的值。

效果如下图所示:

在这里插入图片描述
个人理解:

μ \mu μ 2 2 2 3 3 3 之间时,由于 x n x_n xn 最终会收敛到一个固定的值上,因此迭代 1000 1000 1000 1100 1100 1100 次之间的 x n x_n xn 值相同,汇聚在了上图中的一个点上。当 μ \mu μ 3 3 3 ≈ 3.45 \approx3.45 3.45 之间时,由于 x n x_n xn 最终会在 2 2 2 个值之间震荡,因此汇聚在了上图中的两个点上。

在这里插入图片描述

我们也可以反过来看,即根据结果推测原因。当 μ \mu μ ≈ 3.45 \approx3.45 3.45 ≈ 3.54 \approx3.54 3.54 之间时,由于 x n x_n xn 的值汇聚在了上图中的四个点上,因此可以看出 x n x_n xn 最终会在 4 4 4 个值之间震荡。



这篇关于数字水印 | 混沌逻辑斯谛映射(Chaotic Logistic Map)基本原理及 Python 代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010686

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand