【Unity实战】Mirror/UNET中SyncVar和SyncList需要注意的点

2024-05-25 13:04

本文主要是介绍【Unity实战】Mirror/UNET中SyncVar和SyncList需要注意的点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SyncVar和SyncList在Unity开发中喜闻乐见,常用于脚本中字段的同步。

但也时常会出现修改了但是没同步的问题。

故本人根据过往踩的坑进行了以下总结:

1. 尽量不要用它进行类的同步

在Unity中,[SyncVar] 特性通常用于同步Unity网络游戏中基本类型(如int、float等)或Unity的内置网络标识类型(如NetworkIdentity)的字段。如果[SyncVar]应用于一个类(class)的字段,Unity会尝试同步这个字段的引用,而不是类的内部状态。

这意味着,如果[SyncVar]标记的字段是一个类的实例引用,当这个引用(即对象实例)被替换时,网络上的所有客户端都会收到这个更改并同步新的引用。然而,如果只是类实例内的某个字段发生了变化,而引用本身没有改变,那么默认情况下这些内部变化是不会被自动同步的

如果你的类来源是一个ScriptableObject,那么很遗憾,同步到其他玩家的时候是基本没办法还原成具体哪个ScriptableObject文件(这里指“你的字段 == SO文件”这个条件基本均为false)。

为了同步类实例内的字段,你需要使用Unity的其他机制,比如[Command]和[ClientRPC]方法来手动处理这些变化的传播。

可能你会觉得new一个class再赋值回去不就行了吗?但new一个class会触发GC,内存不友好。

2. 欲触发字段同步,字段必须发生整体的改变

SyncList和SyncVar并不是实时都在同步,只有数据变脏了,才会触发数据的同步。正如第一条所述,如果你的class或者struct的数据变动是在其里面进行的,那么极大概率不会被发现有更改,自然也无法触发hook和callback。

错误示例

SyncListStruct[5].health = 13;

正确示例

SyncListStruct[5].health = 13;

这篇关于【Unity实战】Mirror/UNET中SyncVar和SyncList需要注意的点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001581

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

SpringMVC入参绑定特别注意

1.直接在controller中定义一个变量,但是此种传输方式有一个限制就是参数名和请求中的参数名必须保持一致,否则失效。 @RequestMapping("test2")@ResponseBodypublic DBHackResponse<UserInfoVo> test2(String id , String name){UserInfoVo userInfoVo = new UserInf

springboot实战学习(1)(开发模式与环境)

目录 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 (3)前端 二、开发模式 一、实战学习的引言 (1)前后端的大致学习模块 (2)后端 Validation:做参数校验Mybatis:做数据库的操作Redis:做缓存Junit:单元测试项目部署:springboot项目部署相关的知识 (3)前端 Vite:Vue项目的脚手架Router:路由Pina:状态管理Eleme

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的