双目相机标定以及立体测距原理及OpenCV实现

2024-05-25 12:18

本文主要是介绍双目相机标定以及立体测距原理及OpenCV实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单目相机标定的目标是获取相机的内参和外参,内参(1/dx,1/dy,Cx,Cy,f)表征了相机的内部结构参数,外参是相机的旋转矩阵R和平移向量t。内参中dx和dy是相机单个感光单元芯片的长度和宽度,是一个物理尺寸,有时候会有dx=dy,这时候感光单元是一个正方形。Cx和Cy分别代表相机感光芯片的中心点在x和y方向上可能存在的偏移,因为芯片在安装到相机模组上的时候,由于制造精度和组装工艺的影响,很难做到中心完全重合。f代表相机的焦距。

双目标定的第一步需要分别获取左右相机的内外参数,之后通过立体标定对左右两幅图像进行立体校准和对其,最后就是确定两个相机的相对位置关系,即中心距。

首先看一下双目测距的基本原理:



假设有一个点p,沿着垂直于相机中心连线方向上下移动,则其在左右相机上的成像点的位置会不断变化,即d=x1-x2的大小不断变化,并且点p和相机之间的距离Z跟视差d存在着反比关系。上式中视差d可以通过两个相机中心距T减去p点分别在左右图像上的投影点偏离中心点的值获得,所以只要获取到了两个相机的中心距T,就可以评估出p点距离相机的距离,这个中心距T也是双目标定中需要确立的参数之一。

当然这一切有一个前提就是要在两个相机成像上定位到同一个点p上,就是要把左右两个图片的点匹配起来,这就涉及到双目校正的动作。如果通过一幅图片上一个点的特征在另一个二维图像空间上匹配对应点,这个过程会非常耗时。为了减少匹配搜索的运算量,我们可以利用极限约束使得对应点的匹配由二维搜索空间降到一维搜索空间。




这时候要用双目校正把消除畸变后的两幅图像在水平方向严格的对齐,使得两幅图像的对极线恰好在同一水平线上,这样一幅图像上任意一点与其在另一幅图像上的匹配点就必然具有相同的行号,只需要在该行进行一维搜索就可匹配到对应点。



下边Opencv双目相机校正的代码是在自带的程序stereo_calib.cpp基础上修改的,位置在“XX\opencv\sources\samples\cpp\”,使用时拷贝目录下的26张图片和stereo_calib.xml到当前工程目录下,并在工程调试->命令参数里设置参数为:StereoCalibration -w 9 -h 6 stereo_calib.xml


#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>using namespace cv;
using namespace std;static void StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=true, bool showRectified=true)
{if( imagelist.size() % 2 != 0 ){cout << "Error: the image list contains odd (non-even) number of elements\n";return;}bool displayCorners = true;//true;const int maxScale = 2;const float squareSize = 1.f;  // Set this to your actual square size// ARRAY AND VECTOR STORAGE:vector<vector<Point2f> > imagePoints[2];vector<vector<Point3f> > objectPoints;Size imageSize;int i, j, k, nimages = (int)imagelist.size()/2;imagePoints[0].resize(nimages);imagePoints[1].resize(nimages);vector<string> goodImageList;for( i = j = 0; i < nimages; i++ ){for( k = 0; k < 2; k++ ){const string& filename = imagelist[i*2+k];Mat img = imread(filename, 0);if(img.empty())break;if( imageSize == Size() )imageSize = img.size();else if( img.size() != imageSize ){cout << "The image " << filename << " has the size different from the first image size. Skipping the pair\n";break;}bool found = false;vector<Point2f>& corners = imagePoints[k][j];for( int scale = 1; scale <= maxScale; scale++ ){Mat timg;if( scale == 1 )timg = img;elseresize(img, timg, Size(), scale, scale);found = findChessboardCorners(timg, boardSize, corners,CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);if( found ){if( scale > 1 ){Mat cornersMat(corners);cornersMat *= 1./scale;}break;}}if( displayCorners ){cout << filename << endl;Mat cimg, cimg1;cvtColor(img, cimg, COLOR_GRAY2BGR);drawChessboardCorners(cimg, boardSize, corners, found);double sf = 640./MAX(img.rows, img.cols);resize(cimg, cimg1, Size(), sf, sf);imshow("corners", cimg1);				char c = (char)waitKey(500);if( c == 27 || c == 'q' || c == 'Q' ) //Allow ESC to quitexit(-1);}elseputchar('.');if( !found )break;cornerSubPix(img, corners, Size(11,11), Size(-1,-1),TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30, 0.01));}if( k == 2 ){goodImageList.push_back(imagelist[i*2]);goodImageList.push_back(imagelist[i*2+1]);j++;}}cout << j << " pairs have been successfully detected.\n";nimages = j;if( nimages < 2 ){cout << "Error: too little pairs to run the calibration\n";return;}imagePoints[0].resize(nimages);imagePoints[1].resize(nimages);objectPoints.resize(nimages);for( i = 0; i < nimages; i++ ){for( j = 0; j < boardSize.height; j++ )for( k = 0; k < boardSize.width; k++ )objectPoints[i].push_back(Point3f(k*squareSize, j*squareSize, 0));}cout << "Running stereo calibration ...\n";Mat cameraMatrix[2], distCoeffs[2];cameraMatrix[0] = Mat::eye(3, 3, CV_64F);cameraMatrix[1] = Mat::eye(3, 3, CV_64F);Mat R, T, E, F;double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],cameraMatrix[0], distCoeffs[0],cameraMatrix[1], distCoeffs[1],imageSize, R, T, E, F,TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),CV_CALIB_FIX_ASPECT_RATIO +CV_CALIB_ZERO_TANGENT_DIST +CV_CALIB_SAME_FOCAL_LENGTH +CV_CALIB_RATIONAL_MODEL +CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5);cout << "done with RMS error=" << rms << endl;// CALIBRATION QUALITY CHECK// because the output fundamental matrix implicitly// includes all the output information,// we can check the quality of calibration using the// epipolar geometry constraint: m2^t*F*m1=0double err = 0;int npoints = 0;vector<Vec3f> lines[2];for( i = 0; i < nimages; i++ ){int npt = (int)imagePoints[0][i].size();Mat imgpt[2];for( k = 0; k < 2; k++ ){imgpt[k] = Mat(imagePoints[k][i]);undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k], Mat(), cameraMatrix[k]);computeCorrespondEpilines(imgpt[k], k+1, F, lines[k]);}for( j = 0; j < npt; j++ ){double errij = fabs(imagePoints[0][i][j].x*lines[1][j][0] +imagePoints[0][i][j].y*lines[1][j][1] + lines[1][j][2]) +fabs(imagePoints[1][i][j].x*lines[0][j][0] +imagePoints[1][i][j].y*lines[0][j][1] + lines[0][j][2]);err += errij;}npoints += npt;}cout << "average reprojection err = " <<  err/npoints << endl;// save intrinsic parametersFileStorage fs("intrinsics.yml", CV_STORAGE_WRITE);if( fs.isOpened() ){fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0] <<"M2" << cameraMatrix[1] << "D2" << distCoeffs[1];fs.release();}elsecout << "Error: can not save the intrinsic parameters\n";Mat R1, R2, P1, P2, Q;Rect validRoi[2];stereoRectify(cameraMatrix[0], distCoeffs[0],cameraMatrix[1], distCoeffs[1],imageSize, R, T, R1, R2, P1, P2, Q,CALIB_ZERO_DISPARITY, 1, imageSize, &validRoi[0], &validRoi[1]);fs.open("extrinsics.yml", CV_STORAGE_WRITE);if( fs.isOpened() ){fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2 << "P1" << P1 << "P2" << P2 << "Q" << Q;fs.release();}elsecout << "Error: can not save the extrinsic parameters\n";// OpenCV can handle left-right// or up-down camera arrangementsbool isVerticalStereo = fabs(P2.at<double>(1, 3)) > fabs(P2.at<double>(0, 3));// COMPUTE AND DISPLAY RECTIFICATIONif( !showRectified )return;Mat rmap[2][2];// IF BY CALIBRATED (BOUGUET'S METHOD)if( useCalibrated ){// we already computed everything}// OR ELSE HARTLEY'S METHODelse// use intrinsic parameters of each camera, but// compute the rectification transformation directly// from the fundamental matrix{vector<Point2f> allimgpt[2];for( k = 0; k < 2; k++ ){for( i = 0; i < nimages; i++ )std::copy(imagePoints[k][i].begin(), imagePoints[k][i].end(), back_inserter(allimgpt[k]));}F = findFundamentalMat(Mat(allimgpt[0]), Mat(allimgpt[1]), FM_8POINT, 0, 0);Mat H1, H2;stereoRectifyUncalibrated(Mat(allimgpt[0]), Mat(allimgpt[1]), F, imageSize, H1, H2, 3);R1 = cameraMatrix[0].inv()*H1*cameraMatrix[0];R2 = cameraMatrix[1].inv()*H2*cameraMatrix[1];P1 = cameraMatrix[0];P2 = cameraMatrix[1];}//Precompute maps for cv::remap()initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1, imageSize, CV_16SC2, rmap[0][0], rmap[0][1]);initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2, imageSize, CV_16SC2, rmap[1][0], rmap[1][1]);Mat canvas;double sf;int w, h;if( !isVerticalStereo ){sf = 600./MAX(imageSize.width, imageSize.height);w = cvRound(imageSize.width*sf);h = cvRound(imageSize.height*sf);canvas.create(h, w*2, CV_8UC3);}else{sf = 300./MAX(imageSize.width, imageSize.height);w = cvRound(imageSize.width*sf);h = cvRound(imageSize.height*sf);canvas.create(h*2, w, CV_8UC3);}for( i = 0; i < nimages; i++ ){for( k = 0; k < 2; k++ ){Mat img = imread(goodImageList[i*2+k], 0), rimg, cimg;remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);imshow("单目相机校正",rimg);waitKey();cvtColor(rimg, cimg, COLOR_GRAY2BGR);Mat canvasPart = !isVerticalStereo ? canvas(Rect(w*k, 0, w, h)) : canvas(Rect(0, h*k, w, h));resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);if( useCalibrated ){Rect vroi(cvRound(validRoi[k].x*sf), cvRound(validRoi[k].y*sf),cvRound(validRoi[k].width*sf), cvRound(validRoi[k].height*sf));rectangle(canvasPart, vroi, Scalar(0,0,255), 3, 8);}}if( !isVerticalStereo )for( j = 0; j < canvas.rows; j += 16 )line(canvas, Point(0, j), Point(canvas.cols, j), Scalar(0, 255, 0), 1, 8);elsefor( j = 0; j < canvas.cols; j += 16 )line(canvas, Point(j, 0), Point(j, canvas.rows), Scalar(0, 255, 0), 1, 8);imshow("双目相机校正对齐", canvas);waitKey();char c = (char)waitKey();if( c == 27 || c == 'q' || c == 'Q' )break;}
}static bool readStringList( const string& filename, vector<string>& l )
{l.resize(0);FileStorage fs(filename, FileStorage::READ);if( !fs.isOpened() )return false;FileNode n = fs.getFirstTopLevelNode();if( n.type() != FileNode::SEQ )return false;FileNodeIterator it = n.begin(), it_end = n.end();for( ; it != it_end; ++it )l.push_back((string)*it);return true;
}int main(int argc, char** argv)
{Size boardSize;string imagelistfn;bool showRectified = true;for( int i = 1; i < argc; i++ ){if( string(argv[i]) == "-w" ){if( sscanf(argv[++i], "%d", &boardSize.width) != 1 || boardSize.width <= 0 ){cout << "invalid board width" << endl;return -1;}}else if( string(argv[i]) == "-h" ){if( sscanf(argv[++i], "%d", &boardSize.height) != 1 || boardSize.height <= 0 ){cout << "invalid board height" << endl;return -1;}}else if( string(argv[i]) == "-nr" )showRectified = false;else if( string(argv[i]) == "--help" )return -1;else if( argv[i][0] == '-' ){cout << "invalid option " << argv[i] << endl;return 0;}elseimagelistfn = argv[i];}if( imagelistfn == "" ){imagelistfn = "stereo_calib.xml";boardSize = Size(9, 6);}else if( boardSize.width <= 0 || boardSize.height <= 0 ){cout << "if you specified XML file with chessboards, you should also specify the board width and height (-w and -h options)" << endl;return 0;}vector<string> imagelist;bool ok = readStringList(imagelistfn, imagelist);if(!ok || imagelist.empty()){cout << "can not open " << imagelistfn << " or the string list is empty" << endl;return -1;}StereoCalib(imagelist, boardSize, true, showRectified);return 0;
}


右相机其中一个标定图片查找到的角点:



左相机其中一个标定图片查找到的角点:



右相机单目校正:



左相机单目校正:



左右相机双目立体校正:



双目相机标定后,可以看到左右相机对应匹配点基本上已经水平对齐。


之后在该程序基础上运行stereo_match.cpp,求左右相机的视差。同样工程调试->命令参数里设置参数为:left01.jpg right01.jpg --algorithm=bm -i intrinsics.yml -e extrinsics.yml:


#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/contrib/contrib.hpp"#include <stdio.h>using namespace cv;static void saveXYZ(const char* filename, const Mat& mat)
{const double max_z = 1.0e4;FILE* fp = fopen(filename, "wt");for(int y = 0; y < mat.rows; y++){for(int x = 0; x < mat.cols; x++){Vec3f point = mat.at<Vec3f>(y, x);if(fabs(point[2] - max_z) < FLT_EPSILON || fabs(point[2]) > max_z) continue;fprintf(fp, "%f %f %f\n", point[0], point[1], point[2]);}}fclose(fp);
}int main(int argc, char** argv)
{const char* algorithm_opt = "--algorithm=";const char* maxdisp_opt = "--max-disparity=";const char* blocksize_opt = "--blocksize=";const char* nodisplay_opt = "--no-display";const char* scale_opt = "--scale=";if(argc < 3){return 0;}const char* img1_filename = 0;const char* img2_filename = 0;const char* intrinsic_filename = 0;const char* extrinsic_filename = 0;const char* disparity_filename = 0;const char* point_cloud_filename = 0;enum { STEREO_BM=0, STEREO_SGBM=1, STEREO_HH=2, STEREO_VAR=3 };int alg = STEREO_SGBM;int SADWindowSize = 0, numberOfDisparities = 0;bool no_display = false;float scale = 1.f;StereoBM bm;StereoSGBM sgbm;StereoVar var;for( int i = 1; i < argc; i++ ){if( argv[i][0] != '-' ){if( !img1_filename )img1_filename = argv[i];elseimg2_filename = argv[i];}else if( strncmp(argv[i], algorithm_opt, strlen(algorithm_opt)) == 0 ){char* _alg = argv[i] + strlen(algorithm_opt);alg = strcmp(_alg, "bm") == 0 ? STEREO_BM :strcmp(_alg, "sgbm") == 0 ? STEREO_SGBM :strcmp(_alg, "hh") == 0 ? STEREO_HH :strcmp(_alg, "var") == 0 ? STEREO_VAR : -1;if( alg < 0 ){printf("Command-line parameter error: Unknown stereo algorithm\n\n");return -1;}}else if( strncmp(argv[i], maxdisp_opt, strlen(maxdisp_opt)) == 0 ){if( sscanf( argv[i] + strlen(maxdisp_opt), "%d", &numberOfDisparities ) != 1 ||numberOfDisparities < 1 || numberOfDisparities % 16 != 0 ){printf("Command-line parameter error: The max disparity (--maxdisparity=<...>) must be a positive integer divisible by 16\n");return -1;}}else if( strncmp(argv[i], blocksize_opt, strlen(blocksize_opt)) == 0 ){if( sscanf( argv[i] + strlen(blocksize_opt), "%d", &SADWindowSize ) != 1 ||SADWindowSize < 1 || SADWindowSize % 2 != 1 ){printf("Command-line parameter error: The block size (--blocksize=<...>) must be a positive odd number\n");return -1;}}else if( strncmp(argv[i], scale_opt, strlen(scale_opt)) == 0 ){if( sscanf( argv[i] + strlen(scale_opt), "%f", &scale ) != 1 || scale < 0 ){printf("Command-line parameter error: The scale factor (--scale=<...>) must be a positive floating-point number\n");return -1;}}else if( strcmp(argv[i], nodisplay_opt) == 0 )no_display = true;else if( strcmp(argv[i], "-i" ) == 0 )intrinsic_filename = argv[++i];else if( strcmp(argv[i], "-e" ) == 0 )extrinsic_filename = argv[++i];else if( strcmp(argv[i], "-o" ) == 0 )disparity_filename = argv[++i];else if( strcmp(argv[i], "-p" ) == 0 )point_cloud_filename = argv[++i];else{printf("Command-line parameter error: unknown option %s\n", argv[i]);return -1;}}if( !img1_filename || !img2_filename ){printf("Command-line parameter error: both left and right images must be specified\n");return -1;}if( (intrinsic_filename != 0) ^ (extrinsic_filename != 0) ){printf("Command-line parameter error: either both intrinsic and extrinsic parameters must be specified, or none of them (when the stereo pair is already rectified)\n");return -1;}if( extrinsic_filename == 0 && point_cloud_filename ){printf("Command-line parameter error: extrinsic and intrinsic parameters must be specified to compute the point cloud\n");return -1;}int color_mode = alg == STEREO_BM ? 0 : -1;Mat img1 = imread(img1_filename, color_mode);Mat img2 = imread(img2_filename, color_mode);if (img1.empty()){printf("Command-line parameter error: could not load the first input image file\n");return -1;}if (img2.empty()){printf("Command-line parameter error: could not load the second input image file\n");return -1;}if (scale != 1.f){Mat temp1, temp2;int method = scale < 1 ? INTER_AREA : INTER_CUBIC;resize(img1, temp1, Size(), scale, scale, method);img1 = temp1;resize(img2, temp2, Size(), scale, scale, method);img2 = temp2;}Size img_size = img1.size();Rect roi1, roi2;Mat Q;if( intrinsic_filename ){// reading intrinsic parametersFileStorage fs(intrinsic_filename, CV_STORAGE_READ);if(!fs.isOpened()){printf("Failed to open file %s\n", intrinsic_filename);return -1;}Mat M1, D1, M2, D2;fs["M1"] >> M1;fs["D1"] >> D1;fs["M2"] >> M2;fs["D2"] >> D2;M1 *= scale;M2 *= scale;fs.open(extrinsic_filename, CV_STORAGE_READ);if(!fs.isOpened()){printf("Failed to open file %s\n", extrinsic_filename);return -1;}Mat R, T, R1, P1, R2, P2;fs["R"] >> R;fs["T"] >> T;stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 );Mat map11, map12, map21, map22;initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12);initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map21, map22);Mat img1r, img2r;remap(img1, img1r, map11, map12, INTER_LINEAR);remap(img2, img2r, map21, map22, INTER_LINEAR);img1 = img1r;		img2 = img2r;}numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.width/8) + 15) & -16;bm.state->roi1 = roi1;bm.state->roi2 = roi2;bm.state->preFilterCap = 31;bm.state->SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9;bm.state->minDisparity = 0;bm.state->numberOfDisparities = numberOfDisparities;bm.state->textureThreshold = 10;bm.state->uniquenessRatio = 15;bm.state->speckleWindowSize = 100;bm.state->speckleRange = 32;bm.state->disp12MaxDiff = 1;sgbm.preFilterCap = 63;sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3;int cn = img1.channels();sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;sgbm.minDisparity = 0;sgbm.numberOfDisparities = numberOfDisparities;sgbm.uniquenessRatio = 10;sgbm.speckleWindowSize = bm.state->speckleWindowSize;sgbm.speckleRange = bm.state->speckleRange;sgbm.disp12MaxDiff = 1;sgbm.fullDP = alg == STEREO_HH;var.levels = 3;                                 // ignored with USE_AUTO_PARAMSvar.pyrScale = 0.5;                             // ignored with USE_AUTO_PARAMSvar.nIt = 25;var.minDisp = -numberOfDisparities;var.maxDisp = 0;var.poly_n = 3;var.poly_sigma = 0.0;var.fi = 15.0f;var.lambda = 0.03f;var.penalization = var.PENALIZATION_TICHONOV;   // ignored with USE_AUTO_PARAMSvar.cycle = var.CYCLE_V;                        // ignored with USE_AUTO_PARAMSvar.flags = var.USE_SMART_ID | var.USE_AUTO_PARAMS | var.USE_INITIAL_DISPARITY | var.USE_MEDIAN_FILTERING ;Mat disp, disp8;//Mat img1p, img2p, dispp;//copyMakeBorder(img1, img1p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);//copyMakeBorder(img2, img2p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE);int64 t = getTickCount();if( alg == STEREO_BM )bm(img1, img2, disp);else if( alg == STEREO_VAR ) {var(img1, img2, disp);}else if( alg == STEREO_SGBM || alg == STEREO_HH )sgbm(img1, img2, disp);t = getTickCount() - t;printf("Time elapsed: %fms\n", t*1000/getTickFrequency());//disp = dispp.colRange(numberOfDisparities, img1p.cols);waitKey();if( alg != STEREO_VAR )disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.));elsedisp.convertTo(disp8, CV_8U);if( !no_display ){namedWindow("左相机", 0);imshow("左相机", img1);namedWindow("右相机", 0);imshow("右相机", img2);       imshow("左右相机视差图", disp8);printf("press any key to continue...");fflush(stdout);waitKey();printf("\n");}if(disparity_filename)imwrite(disparity_filename, disp8);if(point_cloud_filename){printf("storing the point cloud...");fflush(stdout);Mat xyz;reprojectImageTo3D(disp, xyz, Q, true);saveXYZ(point_cloud_filename, xyz);printf("\n");}return 0;
}

左右相机校正效果:



左右相机视差图:



视差用亮度表示,越亮表示当前位置距离相机越远。

这篇关于双目相机标定以及立体测距原理及OpenCV实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1001476

相关文章

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的