在前面的章节中,我们使用相关系数函数测量2个变量之间线性相关的强度,对于大多数应用只是知道线性相关是不够的,我们想要理解这个关系的本质,我们会使用简单线性回归来加以理解。 The Model 有2个变量,一个是DataSciencester网站用户的数量,另一个是每个用户在这个网站上每天所花费的时间。假设你自己确信有更多朋友引起人们在这个网站上花费更多的时间。 Engagement部门的副总
这有一个好的数据集 [ SpamAssassin public corpus ]。 我们使用前缀为20021010的文件(在Windows中你可能需要像7-Zip的软件用于解压它们)。 在抽取数据之后(例如,放到C:\spam中),你得到3个文件夹:spam,easy_ham和hard_ham,每个文件夹包含许多邮件,每个邮件包含在单独的文件中,为了让事情变得变得简单些,我们只考虑每个邮件的标
如果人们不能互相沟通,那么社会网络就不是一个好的网络。基于此,DataSciencester网站有个大众的特点,允许用户发送消息给其他的用户。大多数用户是有责任的公民,他们只发送受欢迎的“最近好么”(how is it going?)消息,其他一些用户发送极端的垃圾邮件,关于致富方案、无需开处方的药物等,你的用户开始抱怨,所以Messaging部门的副总要求你使用数据科学找到一个方法过滤这些垃圾邮
维度诅咒(The Curse of Dimensionality) KNN在高维空间运行会出现”维度诅咒”的问题,那是因为在高维空间太广阔,高维空间的数据点不趋向接近另外的数据点。有一个办法可以证明这一点,随机产生很多对d维度的向量,然后计算每对的向量距离。 产生随机数据点: def random_point(dim):return [random.random() for _ in ran