白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设想一下,你正在预测接下来总统选举”我将要选择谁”,如果你不知道关于我的任何信息,一个合乎情理的方法是看我的邻居计划投谁,我们居住在西雅图,我的邻居一定按着计划投给Democratic候选人,这个暗示”Democratic候选人”对我也是个不错的猜想。

设想你知道更多关于我的信息,而不只是地理信息,也许你知道我的年龄、收入、我有几个孩子等等,这些特性扩大了影响我的行为,观察跟我这些特性相似的邻居们做出的选择,来预测我的选择,比观察我的所有邻居要更加靠谱,这个思想就是最近邻分类器(nearest neighbors classification)。

模型(The Model)

最近邻模型是最简单预测模型之一,它没有数学假设,不需要任何排序,只需要一下两点:
* 距离的概念;
* 假设一个点和另外一个临近的点是相似的。

我们在整个章节中所看到的大多数技术都是对覆盖整个数据集上,目的在数据集上学习模型。然而另一方面,最近邻有意识的忽略了很多信息,这是因为,每个新的点预测只依赖离它最近的极少数点。

而且,最近邻模型不可能让你理解你正在观察的现象(特征)为什么驱动模型选择这样一个结果。基于我的邻居的投票来预测我的投票,不会告诉你是什么原因引起我的投票方式。

一般情况,我们有一些数据点并且这些数据点对应着标签,这些标签可能是True或者False,暗示每个输入满足一定条件下为”是垃圾邮件”或者”是有毒的”,或者是一些名目属性标签,像电影的评级(G,PG,PG-13,NC-17)。或者是总统候选人的名字,或者是最喜爱的程序语言。

在我们的例子中,数据点是一些向量,这个意味着我们可以使用距离函数(线性代数篇中有介绍)。

为了做这个,我们需要一个函数计数投票结果:

def raw_majority_vote(labels):votes = Counter(labels)winner, _ = votes.most_common(1)[0]return winner

但是这个没有做任何智能的绑定。例如,设想一下我们正在评级电影,5个电影评级为G,G,PG,PG和R,那么G有2个票数,PG也有2个票数,这种情况下,我们有几个选择:
* 随机选择其中一个;
* 根据距离加权重,选择距离大的为winner;
* 减少k值,直到我们找到唯一的winner。

我们会实现第3种方法:

def majority_vote(labels):"""assumes that labels are ordered from nearest to farthest"""vote_counts = Counter(labels)winner, winner_count = vote_counts.most_common(1)[0]num_winners = len([countfor count in vote_counts.values()if count == winner_count])if num_winners == 1:return winner # unique winner, so return itelse:return majority_vote(labels[:-1]) # try again without the farthest

这个方法很有效,因此,在最坏的情况下,我们一直去掉一个数据点,直到最后只有一个label赢了:

def knn_classify(k, labeled_points, new_point):"""each labeled point should be a pair (point, label)"""# order the labeled points from nearest to farthestby_distance = sorted(labeled_points,# find the labels for the k closestk_nearest_labels = [label for _, label in by_distance[:k]]# and let them votereturn majority_vote(k_nearest_labels)

接下来,让我们看如何在实际中应用它。

这篇关于白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410023

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程