白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设想一下,你正在预测接下来总统选举”我将要选择谁”,如果你不知道关于我的任何信息,一个合乎情理的方法是看我的邻居计划投谁,我们居住在西雅图,我的邻居一定按着计划投给Democratic候选人,这个暗示”Democratic候选人”对我也是个不错的猜想。

设想你知道更多关于我的信息,而不只是地理信息,也许你知道我的年龄、收入、我有几个孩子等等,这些特性扩大了影响我的行为,观察跟我这些特性相似的邻居们做出的选择,来预测我的选择,比观察我的所有邻居要更加靠谱,这个思想就是最近邻分类器(nearest neighbors classification)。

模型(The Model)

最近邻模型是最简单预测模型之一,它没有数学假设,不需要任何排序,只需要一下两点:
* 距离的概念;
* 假设一个点和另外一个临近的点是相似的。

我们在整个章节中所看到的大多数技术都是对覆盖整个数据集上,目的在数据集上学习模型。然而另一方面,最近邻有意识的忽略了很多信息,这是因为,每个新的点预测只依赖离它最近的极少数点。

而且,最近邻模型不可能让你理解你正在观察的现象(特征)为什么驱动模型选择这样一个结果。基于我的邻居的投票来预测我的投票,不会告诉你是什么原因引起我的投票方式。

一般情况,我们有一些数据点并且这些数据点对应着标签,这些标签可能是True或者False,暗示每个输入满足一定条件下为”是垃圾邮件”或者”是有毒的”,或者是一些名目属性标签,像电影的评级(G,PG,PG-13,NC-17)。或者是总统候选人的名字,或者是最喜爱的程序语言。

在我们的例子中,数据点是一些向量,这个意味着我们可以使用距离函数(线性代数篇中有介绍)。

为了做这个,我们需要一个函数计数投票结果:

def raw_majority_vote(labels):votes = Counter(labels)winner, _ = votes.most_common(1)[0]return winner

但是这个没有做任何智能的绑定。例如,设想一下我们正在评级电影,5个电影评级为G,G,PG,PG和R,那么G有2个票数,PG也有2个票数,这种情况下,我们有几个选择:
* 随机选择其中一个;
* 根据距离加权重,选择距离大的为winner;
* 减少k值,直到我们找到唯一的winner。

我们会实现第3种方法:

def majority_vote(labels):"""assumes that labels are ordered from nearest to farthest"""vote_counts = Counter(labels)winner, winner_count = vote_counts.most_common(1)[0]num_winners = len([countfor count in vote_counts.values()if count == winner_count])if num_winners == 1:return winner # unique winner, so return itelse:return majority_vote(labels[:-1]) # try again without the farthest

这个方法很有效,因此,在最坏的情况下,我们一直去掉一个数据点,直到最后只有一个label赢了:

def knn_classify(k, labeled_points, new_point):"""each labeled point should be a pair (point, label)"""# order the labeled points from nearest to farthestby_distance = sorted(labeled_points,# find the labels for the k closestk_nearest_labels = [label for _, label in by_distance[:k]]# and let them votereturn majority_vote(k_nearest_labels)

接下来,让我们看如何在实际中应用它。

这篇关于白手起家学习数据科学 ——k-Nearest Neighbors之“背后的思想”(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410023

相关文章

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5