白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前面的章节中,我们使用相关系数函数测量2个变量之间线性相关的强度,对于大多数应用只是知道线性相关是不够的,我们想要理解这个关系的本质,我们会使用简单线性回归来加以理解。

The Model

有2个变量,一个是DataSciencester网站用户的数量,另一个是每个用户在这个网站上每天所花费的时间。假设你自己确信有更多朋友引起人们在这个网站上花费更多的时间。

Engagement部门的副总要求你建立一个模型,描述这个关系。由于你发现一个极其强的线性关系,自然的你会开启一个线性模型。

尤其,你假设有2个常量 α (alpha)和 β (beta):
yi=αxi+β+σi

yi 是用户 i 在网站上每天花费多少分钟,xi是用户 i 有多少朋友,σi是一个误差项,表示有其他因素没有计算到这个简单模型中。

假设我们确定alpha和beta,那么我们能简单的做出预测:

def predict(alpha, beta, x_i):return beta * x_i + alpha

那么,我们怎样选择alpha和beta?首先我们选择任意的alpha和beta,对于输入x_i会有一个预测的输出,由于我们知道真实的输出y_i,我们能计算每对的误差:

def error(alpha, beta, x_i, y_i):"""the error from predicting beta * x_i + alphawhen the actual value is y_i"""return y_i - predict(alpha, beta, x_i)

我们想要知道的是全部数据集的总体误差,但是我们不想只是简单的把误差相加—-如果x_1预测是正值,x_2预测是负值,那么这2个误差可能互相抵消。

所以,代替的解决方案是求误差的平方和:

def sum_of_squared_errors(alpha, beta, x, y):return sum(error(alpha, beta, x_i, y_i) ** 2for x_i, y_i in zip(x, y))

最小二乘法(least squares solution)是选出的alpha和beta,让sum_of_squared_errors尽可能的小。

使用微积分(或者乏味的代数),最小化误差得到的alpha和beta是:

def least_squares_fit(x, y):"""given training values for x and y,find the least-squares values of alpha and beta"""beta = correlation(x, y) * standard_deviation(y) / standard_deviation(x)alpha = mean(y) - beta * mean(x)return alpha, beta

我们没有仔细检查数学公式,让我们考虑为什么这个是一个合理的解决方案,alpha的选择简单的说是当我们计算出独立变量x的平均值时,我们预测因变量y的平均值。

beta的选择意思是,当输入值增加了standard_deviation(x),预测增加了correlation(x,y)*standard_deviation(y)。在这个案例中,当x与y是完美的正相关,那么x增加一个standard deviation引起预测的y增加一个standard-deviation;当他们是完美的负相关时,x增加引起预测y的减小;当相关系数是0时,意思是x的改变不能影响预测的y值。

很容易应用这个到减少离群值:

alpha, beta = least_squares_fit(num_friends_good, daily_minutes_good)

计算结果alpha = 22.95,beta = 0.903,所以我们的模型预测有n个朋友的用户每天花费 22.95+n0.903 分钟在这个网站上。我们预测没有朋友的用户每天花费23分钟在这个网站上,每增加一个朋友,预测这个用户会多花一分钟的时间在这个网站。

在下图中,我们画出预测线,了解模型怎样拟合观察数据。
这里写图片描述

当然,我们需要更好的方法理解我们拟合数据的程度,而不是盯着图看,一个普遍的测量是决定系数(或者叫R方),测量的是变量发生变化的部分:

def total_sum_of_squares(y):"""the total squared variation of y_i's from their mean"""return sum(v ** 2 for v in de_mean(y))def r_squared(alpha, beta, x, y):"""the fraction of variation in y captured by the model, which equals1 - the fraction of variation in y not captured by the model"""return 1.0 - (sum_of_squared_errors(alpha, beta, x, y) /total_sum_of_squares(y))r_squared(alpha, beta, num_friends_good, daily_minutes_good) # 0.329

现在,我们选择alpha和beta,以使误差的平方和最小化。我们选择的线性模型是”总是预测mean(y)”(对应alpha = mean(y)和beta = 0),它的 sum of squared errors等于它的total sum of squares。意思是R方等于0,暗示一个模型几乎总是等于均值。

很显然,最小二乘模型最差劲的情况下,也就是和上面的模型一样,意思是sum of the squared errors最大是total sum of squares,R方最小是0; sum of squared errors最小是0,R方最大是1。

R方越大,模型拟合的越好。这里我们计算R方等于0.329,告诉我们,我们的模型只是稍微拟合这个数据,很显然还有其他因素的影响。

使用梯度下降法

如果我们要求 theta=[alpha,beta] ,那么我们也能使用梯度下降法(gradient descent)解决这个问题:

def squared_error(x_i, y_i, theta):alpha, beta = thetareturn error(alpha, beta, x_i, y_i) ** 2def squared_error_gradient(x_i, y_i, theta):alpha, beta = thetareturn [-2 * error(alpha, beta, x_i, y_i), # alpha partial derivative-2 * error(alpha, beta, x_i, y_i) * x_i] # beta partial derivative# choose random value to start
random.seed(0)
theta = [random.random(), random.random()]
alpha, beta = minimize_stochastic(squared_error,squared_error_gradient,num_friends_good,daily_minutes_good,theta,0.0001)
print alpha, beta

使用相同的数据,我们能得到alpha = 22.93,beta = 0.905,这个数字非常接近真实的答案。

最大似然估计

为什么要选择最小二乘法,一个判断理由涉及最大似然估计(maximum likelihood estimation)。设想我们有一组样本 v1,...,vn 来自一个分布,这个分布依赖一些位置参数 θ
p(v1,...,vn|θ)

如果我们不知道theta,我们能调换位置,把这个数看成已知样本下 θ 的概率:
L(θ|v1,...,vn)

在这种方法下,最可能的 θ 值是最大化概率函数的情况,即,让观察到的数据最大化概率的值。在连续型分布的案例中,我们有一个概率分布函数而不是概率密度函数,在这种情况下,我们能做相同的事情(因为一般情况下连续型给出的都是概率密度函数)。

回到线性回归中,设想线性回归中的误差服从均值为0,方差为 σ 的整体分布,如果是这种情况,那么基于(x_i, y_i)的概率是:

这里写图片描述

基于全部数据集的似然函数是单个似然的乘积,当选择的alpha和beta最小化误差平方和时精确度最大。即,在本例中,最小化误差平方和等价于最大化观察数据的概率。

下一章节中我们将要介绍多元回归。

这篇关于白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410028

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp