白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前面的章节中,我们使用相关系数函数测量2个变量之间线性相关的强度,对于大多数应用只是知道线性相关是不够的,我们想要理解这个关系的本质,我们会使用简单线性回归来加以理解。

The Model

有2个变量,一个是DataSciencester网站用户的数量,另一个是每个用户在这个网站上每天所花费的时间。假设你自己确信有更多朋友引起人们在这个网站上花费更多的时间。

Engagement部门的副总要求你建立一个模型,描述这个关系。由于你发现一个极其强的线性关系,自然的你会开启一个线性模型。

尤其,你假设有2个常量 α (alpha)和 β (beta):
yi=αxi+β+σi

yi 是用户 i 在网站上每天花费多少分钟,xi是用户 i 有多少朋友,σi是一个误差项,表示有其他因素没有计算到这个简单模型中。

假设我们确定alpha和beta,那么我们能简单的做出预测:

def predict(alpha, beta, x_i):return beta * x_i + alpha

那么,我们怎样选择alpha和beta?首先我们选择任意的alpha和beta,对于输入x_i会有一个预测的输出,由于我们知道真实的输出y_i,我们能计算每对的误差:

def error(alpha, beta, x_i, y_i):"""the error from predicting beta * x_i + alphawhen the actual value is y_i"""return y_i - predict(alpha, beta, x_i)

我们想要知道的是全部数据集的总体误差,但是我们不想只是简单的把误差相加—-如果x_1预测是正值,x_2预测是负值,那么这2个误差可能互相抵消。

所以,代替的解决方案是求误差的平方和:

def sum_of_squared_errors(alpha, beta, x, y):return sum(error(alpha, beta, x_i, y_i) ** 2for x_i, y_i in zip(x, y))

最小二乘法(least squares solution)是选出的alpha和beta,让sum_of_squared_errors尽可能的小。

使用微积分(或者乏味的代数),最小化误差得到的alpha和beta是:

def least_squares_fit(x, y):"""given training values for x and y,find the least-squares values of alpha and beta"""beta = correlation(x, y) * standard_deviation(y) / standard_deviation(x)alpha = mean(y) - beta * mean(x)return alpha, beta

我们没有仔细检查数学公式,让我们考虑为什么这个是一个合理的解决方案,alpha的选择简单的说是当我们计算出独立变量x的平均值时,我们预测因变量y的平均值。

beta的选择意思是,当输入值增加了standard_deviation(x),预测增加了correlation(x,y)*standard_deviation(y)。在这个案例中,当x与y是完美的正相关,那么x增加一个standard deviation引起预测的y增加一个standard-deviation;当他们是完美的负相关时,x增加引起预测y的减小;当相关系数是0时,意思是x的改变不能影响预测的y值。

很容易应用这个到减少离群值:

alpha, beta = least_squares_fit(num_friends_good, daily_minutes_good)

计算结果alpha = 22.95,beta = 0.903,所以我们的模型预测有n个朋友的用户每天花费 22.95+n0.903 分钟在这个网站上。我们预测没有朋友的用户每天花费23分钟在这个网站上,每增加一个朋友,预测这个用户会多花一分钟的时间在这个网站。

在下图中,我们画出预测线,了解模型怎样拟合观察数据。
这里写图片描述

当然,我们需要更好的方法理解我们拟合数据的程度,而不是盯着图看,一个普遍的测量是决定系数(或者叫R方),测量的是变量发生变化的部分:

def total_sum_of_squares(y):"""the total squared variation of y_i's from their mean"""return sum(v ** 2 for v in de_mean(y))def r_squared(alpha, beta, x, y):"""the fraction of variation in y captured by the model, which equals1 - the fraction of variation in y not captured by the model"""return 1.0 - (sum_of_squared_errors(alpha, beta, x, y) /total_sum_of_squares(y))r_squared(alpha, beta, num_friends_good, daily_minutes_good) # 0.329

现在,我们选择alpha和beta,以使误差的平方和最小化。我们选择的线性模型是”总是预测mean(y)”(对应alpha = mean(y)和beta = 0),它的 sum of squared errors等于它的total sum of squares。意思是R方等于0,暗示一个模型几乎总是等于均值。

很显然,最小二乘模型最差劲的情况下,也就是和上面的模型一样,意思是sum of the squared errors最大是total sum of squares,R方最小是0; sum of squared errors最小是0,R方最大是1。

R方越大,模型拟合的越好。这里我们计算R方等于0.329,告诉我们,我们的模型只是稍微拟合这个数据,很显然还有其他因素的影响。

使用梯度下降法

如果我们要求 theta=[alpha,beta] ,那么我们也能使用梯度下降法(gradient descent)解决这个问题:

def squared_error(x_i, y_i, theta):alpha, beta = thetareturn error(alpha, beta, x_i, y_i) ** 2def squared_error_gradient(x_i, y_i, theta):alpha, beta = thetareturn [-2 * error(alpha, beta, x_i, y_i), # alpha partial derivative-2 * error(alpha, beta, x_i, y_i) * x_i] # beta partial derivative# choose random value to start
random.seed(0)
theta = [random.random(), random.random()]
alpha, beta = minimize_stochastic(squared_error,squared_error_gradient,num_friends_good,daily_minutes_good,theta,0.0001)
print alpha, beta

使用相同的数据,我们能得到alpha = 22.93,beta = 0.905,这个数字非常接近真实的答案。

最大似然估计

为什么要选择最小二乘法,一个判断理由涉及最大似然估计(maximum likelihood estimation)。设想我们有一组样本 v1,...,vn 来自一个分布,这个分布依赖一些位置参数 θ
p(v1,...,vn|θ)

如果我们不知道theta,我们能调换位置,把这个数看成已知样本下 θ 的概率:
L(θ|v1,...,vn)

在这种方法下,最可能的 θ 值是最大化概率函数的情况,即,让观察到的数据最大化概率的值。在连续型分布的案例中,我们有一个概率分布函数而不是概率密度函数,在这种情况下,我们能做相同的事情(因为一般情况下连续型给出的都是概率密度函数)。

回到线性回归中,设想线性回归中的误差服从均值为0,方差为 σ 的整体分布,如果是这种情况,那么基于(x_i, y_i)的概率是:

这里写图片描述

基于全部数据集的似然函数是单个似然的乘积,当选择的alpha和beta最小化误差平方和时精确度最大。即,在本例中,最小化误差平方和等价于最大化观察数据的概率。

下一章节中我们将要介绍多元回归。

这篇关于白手起家学习数据科学 ——线性回归之“简单线性回归篇”(十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410028

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal