白手起家学习数据科学 ——k-Nearest Neighbors之“维度诅咒”(九)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——k-Nearest Neighbors之“维度诅咒”(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

维度诅咒(The Curse of Dimensionality)

KNN在高维空间运行会出现”维度诅咒”的问题,那是因为在高维空间太广阔,高维空间的数据点不趋向接近另外的数据点。有一个办法可以证明这一点,随机产生很多对d维度的向量,然后计算每对的向量距离。

产生随机数据点:

def random_point(dim):return [random.random() for _ in range(dim)]

生成每对(num_pairs)向量的距离:

def random_distances(dim, num_pairs):return [distance(random_point(dim), random_point(dim))for _ in range(num_pairs)]

我们会计算维度从1到100,每一维度计算出10000个距离,使用这些距离计算每一维的平均距离和找出最小距离:

dimensions = range(1, 101)avg_distances = []
min_distances = []random.seed(0)
for dim in dimensions:distances = random_distances(dim, 10000) # 10,000 random pairsavg_distances.append(mean(distances)) # track the averagemin_distances.append(min(distances)) # track the minimum

这里写图片描述

当维度增加时,数据点之间的平均距离也增加,但是更重要的问题是在最近距离与平均距离的比率:

min_avg_ratio = [min_dist / avg_distfor min_dist, avg_dist in zip(min_distances, avg_distances)]

这里写图片描述

在低维数据集中,最小距离数据点更加接近平均值;在高维数据集中,最小距离数据点不接近平均值,这个意味着最小距离的2个数据点并不是很接近。

解决方案对高维空间进行降维。

在0到1之间,在一维空间里,你提取50个随机点,你将得到极好的且紧凑的样本:
这里写图片描述

在2维空间里,提取50个随机点,你会发现随机点零散的覆盖在2维空间里:
这里写图片描述

在3维空间里,你会得到更加零散的随机点:
这里写图片描述

matplotlib不能画4维空间,这是我们能做的最大限度了,但是这足够发现有很多空的空间,且在随机点周围没有太多的数据点。在更高维空间,除非你得到更加多的数据(指数增加的数据),否者这些大且空的空间表示没有数据点的区域,你想在你的模型中使用是非常不准确。

所以,如果你正在尝试在高维空间使用最近邻模型,那么一个好的主意是降维。下一章节中我们将要介绍朴素贝叶斯(Naive Bayes)。

这篇关于白手起家学习数据科学 ——k-Nearest Neighbors之“维度诅咒”(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410025

相关文章

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE