白手起家学习数据科学 ——k-Nearest Neighbors之“例子篇”(九)

2023-11-22 12:08

本文主要是介绍白手起家学习数据科学 ——k-Nearest Neighbors之“例子篇”(九),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

例子:最喜欢的编程语言(Example: Favorite Languages)

DataSciencester网站用户调查结果出来了,我们发现在许多大城市里人们所喜欢的编程语言如下:

# each entry is ([longitude, latitude], favorite_language)cities = [([-122.3 , 47.53], "Python"),  # Seattle([ -96.85, 32.85], "Java"),    # Austin([ -89.33, 43.13], "R"),       # Madison]

公司副总裁想要知道,在没有参加调查的地方,是否我们能使用这些结果预测最喜欢的编程语言。

像往常一样,第一个步骤是把数据画出来:

# key is language, value is pair (longitudes, latitudes)
plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }# we want each language to have a different marker and color
markers = { "Java" : "o", "Python" : "s", "R" : "^" }
colors  = { "Java" : "r", "Python" : "b", "R" : "g" }for (longitude, latitude), language in cities:plots[language][0].append(longitude)plots[language][1].append(latitude)# create a scatter series for each language
for language, (x, y) in plots.iteritems():plt.scatter(x, y, color=colors[language], marker=markers[language], label=language, zorder=10)plot_state_borders(plt)      # pretend we have a function that does thisplt.legend(loc=0)            # let matplotlib choose the location
plt.axis([-130,-60,20,55])   # set the axesplt.title("Favorite Programming Languages")
plt.show()

这里写图片描述

由于相近的地方趋向同一种编程语言,KNN似乎是一种合理的预测语言模型。

如果我们试着使用相邻城市而不是本身来预测每个城市所喜爱的语言,会发生什么呢:

# try several different values for k
for k in [1, 3, 5, 7]:num_correct = 0for city in cities:location, actual_language = cityother_cities = [other_cityfor other_city in citiesif other_city != city]predicted_language = knn_classify(k, other_cities, location)if predicted_language == actual_language:num_correct += 1print k, "neighbor[s]:", num_correct, "correct out of", len(cities)

看起来3NN执行的效果最好,大约59%的正确率:

这里写图片描述

现在我们能看出在最近邻方案中什么区域被分类成哪种语言,我们能画图如下:

plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) }k = 1 # or 3, or 5, or ...for longitude in range(-130, -60):for latitude in range(20, 55):predicted_language = knn_classify(k, cities, [longitude, latitude])plots[predicted_language][0].append(longitude)plots[predicted_language][1].append(latitude)

在下图,展示的是k=1情况:
这里写图片描述

当k增加到5时,边界变得更加光滑:
这里写图片描述

这里是我们粗略的进行比较,如果它们有单位,你可能想要先进行尺度变换操作。接下来我们将要介绍不同维度距离的变化。

这篇关于白手起家学习数据科学 ——k-Nearest Neighbors之“例子篇”(九)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410024

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram