欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/136153329 CombFold: GitHub:https://github.com/dina-lab3D/CombFoldPaper:predicting structures of large prot
《Protein Actions Principles and Modeling》-《蛋白质作用原理和建模》 本人能力有限,如果错误欢迎批评指正。 第五章:Folding and Aggregation Are Cooperative Transitions (折叠和聚合是同时进行的) -蛋白质折叠的协同作用来自于二级和三级的结构相互作用 现在,我们应该如何
论文题目:Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks 下载链接:https://academic.oup.com/bioinformat
荧光素APC标记猪胰岛素蛋白,Insulin Protein /APC,OVA/RBITC 卵清蛋白是一种常见的蛋白质,通常用于实验室研究中。TMR染料可以与卵清蛋白发生共轭反应,从而实现卵清蛋白的荧光标记。这种标记可以用于immunity染色、细胞成像、蛋白质追踪等多种实验应用。 四甲基罗丹明(Tetramethylrhodamine,TMR)是一种常用的荧光染料,也被称为TMR染料或R
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/134208615 Paper: Accurate prediction of nucleic acid and protein-nucleic acid complexes using RoseTTAFoldNA
How to prepare structures for HADDOCK? – Bonvin Labhttps://www.bonvinlab.org/software/bpg/structures/RosettaDock: 蛋白-蛋白复合物对接预测 - 知乎 (zhihu.com) 要进行LPR1-SEPP1复合物的结合亲和力预测,您可以按照以下步骤进行: 获取蛋白质结构数据:首先,
论文题目:Protein−Ligand Scoring with Convolutional Neural Networks scholar 引用:121 页数:16 发表时间:2017.04 发表刊物:Journal of Chemical Information and Modeling 作者:Matthew Ragoza, Joshua Hochuli, Elisa Idrobo,
论文解读《Protein subcellular localization based on deep image features and criterion learning strategy》 基于深度图像特征和标准学习策略的蛋白质亚细胞定位 期刊名: BRIEFINGS IN BIOINFORMATICS 期刊名缩写:BRIEF BIOINFORM 国际刊号:1467-5463 202