PSSP之特征提取(PSSP protein secondary structure prediction)

2024-01-20 00:08

本文主要是介绍PSSP之特征提取(PSSP protein secondary structure prediction),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PSSP之特征提取(PSSP protein secondary structure prediction)

    • One-hot encoding AAC
    • PSSM encoding
    • SVM 分类
    • 优化之特征清洗

One-hot encoding AAC

维度为20+3(BXZ)。

PSSM encoding

  1. fasta文件
  2. psi-blast程序+protein db(nr db 40G 下载失败 uniref50 6G 下载成功)
  3. makeblastdb.exe (uniref50 格式化成功 耗时 4846 secords)
  4. python批量 cmd操作(待续)
  5. data_process.py

SVM 分类

多核组合rbf+lin 效果好

优化之特征清洗

这篇关于PSSP之特征提取(PSSP protein secondary structure prediction)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/624170

相关文章

【LVI-SAM】激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节

激光雷达点云处理特征提取LIO-SAM 之FeatureExtraction实现细节 1. 特征提取实现过程总结1.0 特征提取过程小结1.1 类 `FeatureExtraction` 的整体结构与作用1.2 详细特征提取的过程1. 平滑度计算(`calculateSmoothness()`)2. 标记遮挡点(`markOccludedPoints()`)3. 特征提取(`extractF

图特征工程实践指南:从节点中心性到全局拓扑的多尺度特征提取

图结构在多个领域中扮演着重要角色,它能有效地模拟实体间的连接关系,通过从图中提取有意义的特征,可以获得宝贵的信息提升机器学习算法的性能。 本文将介绍如何利用NetworkX在不同层面(节点、边和整体图)提取重要的图特征。 本文将以NetworkX库中提供的Zachary网络作为示例。这个广为人知的数据集代表了一个大学空手道俱乐部的社交网络,是理解图特征提取的理想起点。 我们先定义一些辅助函数

语音特征提取方法 (二)MFCC

下面总结的是第四个知识点:MFCC。因为花的时间不多,所以可能会有不少说的不妥的地方,还望大家指正。谢谢。         在任意一个Automatic speech recognition 系统中,第一步就是提取特征。换句话说,我们需要把音频信号中具有辨识性的成分提取出来,然后把其他的乱七八糟的信息扔掉,例如背景噪声啊,情绪啊等等。       搞清语音是怎么产生的对于我们理解语音有很大

Dimension out of range 等报错解决,可以加拼接后的深度特征提取了

报错 Extracting test features for class bagel: 0%| | 0/110 [00:00<?, ?it/s]Traceback (most recent call last):File "/home/cszx/c1/zgp/3D-ADS-main/patchcore_runner.py", line 46, in evaluatemet

pycharm的Structure是什么,怎么打开,每个图标的功能是什么

一、Structure的含义 在PyCharm中,Structure是一个非常有用的功能,它可以帮助开发者快速浏览和理解当前文件的代码结构,Structure视图通过不同的图标来表示代码中的不同元素。 二、如何打开Structure功能 在windows上可以通过Alt+7来打开Structure 图标中的"-"表示隐藏Stucture 三、Stucture结构中的图标有何功能

TCNN:Modeling and Propagating CNNs in a Tree Structure for Visual Tracking

TCNN:Modeling and Propagating CNNs in a Tree Structure for Visual Tracking arXiv 16 Hyeonseob Nam∗ Mooyeol Baek∗ Bohyung Han 韩国POSTECH大学 Bohyung Han团队的论文,MDNet,BranchOut的作者。 Movtivation 本文的motiv

跨模态检索研究进展综述【跨模态检索的核心工作在于:①不同模态数据的特征提取、②不同模态数据之间内容的相关性度量】【主流研究方法:基于传统统计分析的技术、基于深度学习的技术】【哈希编码提高检索速度】

随着互联网上多媒体数据的爆炸式增长,单一模态的检索已经无法满足用户需求,跨模态检索应运而生. 跨模态检索旨在以一种模态的数据去检索另一种模态的相关数据。 跨模态检索的核心任务是:数据特征提取 和 不同模态数据之间内容的相关性度量。 文中梳理了跨模态检索领域近期的研究进展,从以下角度归纳论述了跨模态检索领域的研究成果.: 传统方法;深度学习方法;手工特征的哈希编码方法;深度学习的哈希编码方法

keras 实现dense prediction 逐像素标注 语义分割 像素级语义标注 pixelwise segmention labeling classification 3D数据

主要是keras的示例都是图片分类。而真正的论文代码,又太大了,不适合初学者(比如我)来学习。 所以我查找了一些资料。我在google 上捞的。 其中有个教程让人感觉很好.更完整的教程。另一个教程。 大概就是说,你的输入ground truth label需要是(width*height,class number),然后网络最后需要加个sigmoid,后面用binary_crossentro

Structure-Aware Feature Fusion for Unsupervised Domain Adaptation

Structure-Aware Feature Fusion for Unsupervised Domain Adaptation 摘要引言相关工作UDA中的分布匹配方法 Model 摘要 无监督域适应(Unsupervised Domain Adaptation,UDA)旨在从有标注的源域中学习并迁移通用特征到无任何标注的目标域。现有的方法仅对高层次的表示进行对齐,却没有利

Pointnet++改进即插即用系列:全网首发ACConv2d|即插即用,提升特征提取模块性能

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入ACConv2d,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一          2.2 步骤二          2.3 步骤三 1.理论介绍 由于在给定的应用环境中