前面大概了解了Together AI的新研究MoA,比较好奇具体的实现方法,所以再来看一下对应的文章论文。 论文:《Mixture-of-Agents Enhances Large Language Model Capabilities》 论文链接:https://arxiv.org/html/2406.04692v1 这篇文章的标题是《Mixture-of-Agents Enhances
翻译并简化自:http://blog.otoro.net/2015/11/24/mixture-density-networks-with-tensorflow/?tdsourcetag=s_pctim_aiomsg notebook地址: http://otoro.net/ml/ipynb/mixture/mixture.html 原文的TF代码+版本微调,和本人用Keras复现的,代码见 h
paper | project Abstract 尽管在过去的几年中,深度学习大大提高了立体匹配的精度,但有效地恢复尖锐边界和高分辨率输出仍然具有挑战性。在本文中,我们提出了立体混合密度网络(Stereo Mixture Density Networks, SMD-Nets),这是一种简单而有效的学习框架,可与广泛的2D和3D体系结构兼容,改善了这两个问题。 具体来说,我们利用双峰混合密度作
本文的参考资料:《Python数据科学手册》; 本文的源代上传到了Gitee上; 本文用到的包: %matplotlib inlineimport numpy as npimport pandas as pdimport seaborn as snsimport matplotlib.pyplot as pltfrom matplotlib.patches import Ellips
Gaussian Mixture Model 高斯混合模型 GMM Gaussian mixture model is a combine of multiple Gaussian models. These Gaussian models mixture according to ‘weight’ π \pi π. The picture is a mixture of two mo