算法导论--第15章 动态规划--钢条切割

2024-05-24 22:32

本文主要是介绍算法导论--第15章 动态规划--钢条切割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法导论

--第15章 动态规划

动态规划:通过组合子问题的解来求解原问题,应用于子问题重叠的情况,即不同的子问题具有公共的子子问题。

设计动态规划算法的步骤:

①   刻画一个最优解的结构特征。

②   递归定义最优解的值。

③   计算最优解的值,通常采用自底向上的方法。

④   利用计算处的信息构造一个最优解。

 

 

15.1 钢条切割

 钢条切割问题:给定一段长度为n英寸的钢条和一个价格表 (i=1,2, …,n),求切割钢条的方案,使得销售收益 最大。注意,如果长度为n英寸的钢条价格  足够大,最饥饿可能就是完全不需要切割。

若钢条的长度为i,则钢条的价格为Pi,如何对给定长度的钢条进行切割能得到最大收益?

长度i    1    2    3   4     5      6      7     8      9      10

价格Pi    1    5    8   9     10    17   17   20    14    30

 

i = 1时,钢条不可切割,r[1]= 1

i = 2时,钢条可分割为1+ 1,其价格为2。若不分割(0 + 2),价格为5。即r[2] = 5

i = 3时,钢条可分割为0+ 3, 1 + 2。r[3] = 8

同理可得:

r[4] = 10(2+ 2)

r[5] = 13(2+ 3)

r[6] = 17(0+ 6)

r[7] = 18(1+ 6或4+ 3=> 2 + 2 + 3

.......

 

我们可以发现,长度为7时,将其切割为长度4与长度3的钢条,并对两个钢条分别求最优解:长度4的最优解为r[4] = 10(2 + 2),长度3的最优解为r[3] = 8,即可得r[7] =r[4]+ r[3] =>原问题的最优解等于子问题的最优解之和的最大值

 我们将钢条左边切割下长度为 i 的一段,只对右边剩下的长度为 n-i 的一段继续进行切割(递归求解),对左边的一段不再进行切割。即问题分解的方式为:将长度为n 的钢条分解为左边开始一段,以及剩余部分继续分解的结果。这样,不做任何切割的方案就可以描述为:第一段的长度为n ,收益为 pn,剩余部分长度为0,对应的收益为r0=0。于是公式的简化版本:

因此,在计算r[i]时,所求值即为r[0] +r[i],r[1]+ r[i- 1],r[2]+ r[i- 2],...  ,r[i- 1] +r[1] 之间的最大值,而在动态规划中,r[0]——r[i - 1]的值在计算r[i]之前已经保存好了,进行少量的运算便能取得最优结果。

codes:

#include<iostream>
#include<cstring>
using namespace std;
int p[1000],r[1000],s[1000];
void cut_rod(int* a,int b)
{r[0]=0;for(int i=1;i<=b;i++){int q=-1e8;for(int j=1;j<=i;j++){if(q<(a[j]+r[i-j])){q=a[j]+r[i-j];s[i]=j;r[i]=q;}}}cout<<r[b]<<endl<<s[b]<<endl;
}
int main()
{int n;cin>>n;memset(p,0,sizeof(p));memset(r,0,sizeof(r));memset(s,0,sizeof(s));for(int i=1;i<=n;i++)cin>>p[i];cut_rod(p,n);return 0;
}


这篇关于算法导论--第15章 动态规划--钢条切割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999715

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math