支持向量机SVM与逻辑斯谛回归LR区别

2024-05-24 20:18

本文主要是介绍支持向量机SVM与逻辑斯谛回归LR区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

逻辑回归模型

逻辑回归模型是一种分类模型,由条件概率分布P(Y|X) 表示,形式为参数化的逻辑分布,这里,随机变量X取值为实数,随机变量Y取值为1或0。

在学习逻辑回归时大家总是将线性回归作比较,线性回归模型的输出一般是连续

在线性回归模型中每一个输入x,都有一个对应的y输出。模型的定义域和值域都可以是[-∞, +∞]。但是逻辑回归输入可以是连续的[-∞, +∞],输出却一般是离散的,即只有有限个多个输出值。例如值域可以只有两个值{0,1},这两个值可以表示对样本的某种分类(高/低,好/坏等),这就是常见的二分类逻辑回归。因此,从整体上来说,通过LR我们可以将整个实数范围上的x映射到了有限个点上,这样就实现了对X的分类

LR与SVM的相同点

  • LR和SVM都是分类算法;
  • 如果不考虑核函数,LR和SVM都是线性分类算法,也就是它们的分类决策面都是线性的;
  • SVM只考虑局部的边界线附近的点,而LR考虑全局(远离的点对边界线的确定也起作用)。

影响SVM决策面的样本点只有少数的结构支持向量,当在支持向量外添加或减少任何样本点对分类决策面没有任何影响;而在LR中,每个样本点都会影响决策面的结果。

a.SVM改变非支持向量样本并不会引起决策面的变化


b.LR中改变任何样本都会引起决策面的变化


  • LR和SVM都是监督学习。
  • LR和SVM都是判别模型

判别模型会生成一个表示P(Y|X)的判别函数(或预测模型),而生成模型先计算联合概率p(Y,X)然后通过贝叶斯公式转化为条件概率。简单来说,在计算判别模型时,不会计算联合概率,而在计算生成模型时,必须先计算联合概率

常见的判别模型有:SVM、LR,条件随机场(CRF),CART,最大熵,决策树

常见的生成模型有:朴素贝叶斯,隐马尔可夫模型,贝叶斯网络,KNN,马尔科夫随机场(MRF)



LR与SVM的不同

  • 本质上是两者的损失函数的不同
逻辑回归一般使用交叉熵作为损失函数:

SVM损失函数:


其中, m:训练样本的个数;hθ(x):用参数θ和x预测出来的y值;y:原训练样本中的y值,也就是标准答案; 上角标(i):第i个样本

  • 线性SVM依赖数据表达的距离测度,所以需要对数据先做Normalization,  LR不受其影响;
要说有什么本质区别,那就是两个模型对数据和参数的敏感程度不同,因为SVM在计算margin有多“宽”的时候依赖数据表达上的距离测度,如果这个测度不好,所求得的Large margin就没有意义了,这个问题即使换用kernel trick也无法避免。所以使用SVM之前都需要先对数据进行Normalization,而求解LR时候则不需要或者结果不敏感。
  • 在解决非线性问题时,SVM采用核函数的机制,而LR通常不采用核函数

这个问题理解起来非常简单。分类模型的结果就是计算决策面,模型训练的过程就是决策面的计算过程。通过上面的第二点不同点可以了解,在计算决策面时,SVM算法里只有少数几个代表支持向量的样本参与了计算,也就是只有少数几个样本需要参与核计算(即kernal machine解的系数是稀疏的)。然而,LR算法里,每个样本点都必须参与决策面的计算过程,也就是说,假设我们在LR里也运用核函数的原理,那么每个样本点都必须参与核计算,这带来的计算复杂度是相当高的。所以,在具体应用时,LR很少运用核函数机制。

  • SVM与LR学习算法

LR学习算法有: 改进的迭代尺度算法,梯度下降,拟牛顿法

SVM学习算法: 序列最小优化算法(SMO)

  • SVM的损失函数就自带正则(损失函数中的1/2||w||^2项),这就是为什么SVM就是结构风险最小化算法的原因,而LR必须另外在损失函数上添加正则项,关于正则化可参考我的另一篇博客:https://blog.csdn.net/u010899985/article/details/79471909


这篇关于支持向量机SVM与逻辑斯谛回归LR区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999426

相关文章

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Golan中 new() 、 make() 和简短声明符的区别和使用

《Golan中new()、make()和简短声明符的区别和使用》Go语言中的new()、make()和简短声明符的区别和使用,new()用于分配内存并返回指针,make()用于初始化切片、映射... 详细介绍golang的new() 、 make() 和简短声明符的区别和使用。文章目录 `new()`

Python中json文件和jsonl文件的区别小结

《Python中json文件和jsonl文件的区别小结》本文主要介绍了JSON和JSONL两种文件格式的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下... 众所周知,jsON 文件是使用php JSON(JavaScripythonpt Object No

结构体和联合体的区别及说明

《结构体和联合体的区别及说明》文章主要介绍了C语言中的结构体和联合体,结构体是一种自定义的复合数据类型,可以包含多个成员,每个成员可以是不同的数据类型,联合体是一种特殊的数据结构,可以在内存中共享同一... 目录结构体和联合体的区别1. 结构体(Struct)2. 联合体(Union)3. 联合体与结构体的

什么是 Ubuntu LTS?Ubuntu LTS和普通版本区别对比

《什么是UbuntuLTS?UbuntuLTS和普通版本区别对比》UbuntuLTS是Ubuntu操作系统的一个特殊版本,旨在提供更长时间的支持和稳定性,与常规的Ubuntu版本相比,LTS版... 如果你正打算安装 Ubuntu 系统,可能会被「LTS 版本」和「普通版本」给搞得一头雾水吧?尤其是对于刚入

python中json.dumps和json.dump区别

《python中json.dumps和json.dump区别》json.dumps将Python对象序列化为JSON字符串,json.dump直接将Python对象序列化写入文件,本文就来介绍一下两个... 目录1、json.dumps和json.dump的区别2、使用 json.dumps() 然后写入文

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

native和static native区别

本文基于Hello JNI  如有疑惑,请看之前几篇文章。 native 与 static native java中 public native String helloJni();public native static String helloJniStatic();1212 JNI中 JNIEXPORT jstring JNICALL Java_com_test_g

Android fill_parent、match_parent、wrap_content三者的作用及区别

这三个属性都是用来适应视图的水平或者垂直大小,以视图的内容或尺寸为基础的布局,比精确的指定视图的范围更加方便。 1、fill_parent 设置一个视图的布局为fill_parent将强制性的使视图扩展至它父元素的大小 2、match_parent 和fill_parent一样,从字面上的意思match_parent更贴切一些,于是从2.2开始,两个属性都可以使用,但2.3版本以后的建议使