机器学习算法模型评价指标ROC AUC

2024-05-24 20:18

本文主要是介绍机器学习算法模型评价指标ROC AUC,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【导读】在机器学习研究或项目中使用分类精度、均方误差这些方法衡量模型的性能。当然,在进行实验的时候,一种或两种衡量指标并不能说明一个模型的好坏,因此我们需要了解常用的几种机器学习算法衡量指标。    本文整理介绍了7种最常用的机器学习算法衡量指标:分类精度、对数损失、混淆矩阵、曲线下面积、F1分数、平均绝对误差、均方误差。相信阅读之后你能对这些指标有系统的理解。

 

1.分类精度

当我们使用“准确性”这个术语时,指的就是分类精度。它是 正确预测数 与 样本总数 的比值。

只有当属于每个类的样本数量相等时,它才有效

 

例如,假设在我们的训练集中有98%的A类样本和2%的B类样本。然后,我们的模型可以通过简单预测每个训练样本都属于A类而轻松获得98%的训练准确性。

当在60%A级样品和40%B级样品的测试集上采用相同的模型时,测试精度将下降到60%。分类准确度很重要,但是它有时会带给我们一种错觉,使我们认为模型已经很好。真正的问题出现在,当少量样本类被误分类造成很大的损失的情况下。

1.诊断罕见但致命

如果我们处理一种 罕见但致命 的疾病,那么 真正的患者未被诊断出疾病 的造成的损失远高于  健康人未被诊断出疾病。

2. 地震的预测
对于地震的预测,我们希望的是Recall 非常高,也就是说每次地震我们都希望预测出来。这个时候我们可以牺牲PRECISION。情愿发出1000次警报,把10次地震都预测正确了;也不要预测100次对了8次漏了两次。

2.对数损失

对数损失,通过惩罚错误的分类来工作,它适用于多类分类。在处理对数损失时,分类器必须为所有样本分配属于每个类的概率。假设,有N个样本属于M类,那么对数损失的计算如下:

 

其中,yij 表示样本i是否属于类别 j,Pij表示样本i属于类j的概率

对数损失的值没有上限,它取值于[0,∞)范围内。对数损失接近0表示其有高的准确性,而如果对数损失远离0则表明准确度较低。

一般来说,最大限度地减少对数损失可以提高分类精度。(在模型训练时,经常最小化对数损失)

 

3.混淆矩阵

混淆矩阵顾名思义,通过一个矩阵描述了模型的完整性能。

假设我们有一个二元分类问题。我们有一些样本,它们只属于两个类别:是或否。另外,我们有自己的分类器,它用来预测给定输入样本的类。我们在样品上测试了我们的模型,得到了如下结果:

有四个重要的术语:

真阳(True Positives,TP): 模型预测“是”并且实际产出也是“是” 的情况

真阴(True Negatives,TN):模型预测“否”并且实际产出也是“是”的情况

假阳(False Positives,FP):模型预测“是”并且实际产出也是“否”的情况

假阴(False Negatives,FN): 模型预测“否”并且实际产出也是“否”的情况

 

精确率(precision

 

召回率(recall):

 

F1: F1分数用于衡量测试的准确性。

F1分数是精确度和召回率之间的调和平均值(Harmonic Mean)。 F1分数的范围是[0,1]。 它会告诉您分类器的精确程度(正确分类的实例数),以及它的稳健程度(它不会错过大量实例)。高精度和低召回率,会带来高的精度,但也会错过了很多很难分类的实例F1得分越高,我们模型的表现越好。 在数学上,它可以表示为:

可以看出,混淆矩阵是其他度量类型的基础。

4.ROC曲线(ROC curve)

用于度量分类中的非均衡性的工具是ROC曲线,ROC代表接收者操作特征(receiver operating characteristic),它最早在二战期间由电气工程师构建雷达系统时使用过。

一般来说,如果ROC是光滑的,那么基本可以判断没有太大的overfitting(比如图中绿线25到50可能就有问题,但是样本太少了),这个时候调模型可以只看AUC,面积越大一般认为模型越好。

True Positive Rate (真阳性率):它被定义为TP /(FN + TP)。 对于所有正数据点,它对应于正数据点被正确认为是正的比例。

False Positive Rate (假阳性率) :它被定为FP /(FP + TN)。即对应于所有负数据点,负数据点被错误地认为是正的比例。

如图ROC曲线给出了两条线,一条虚线和一条实线。图中横轴是假阳率(FPR),纵轴是真阳率(TPR).ROC曲线给出的是当阈值变化时假阳率和真阳率的变化情况。左下角的点所对应的是将所有样例判为反例的情况,而右上角的点对应的则是将所有样例判为正例的情况。虚线 给出的是 随机猜测 的结果曲线

理想情况下,最佳分类器应该尽可能地处于左上角,这就意味着分类器在假阳率很低的同时获得了很高真阳率

5.曲线下的面积(Area Under Curve, AUC)

对不同的ROC曲线进行比较的一个指标是曲线下的面积(Area Under Curve,AUC),曲线下面积(AUC)是评估中使用最广泛的指标之一。 它用于二分类问题。分类器的AUC等价于分类器随机选择正样本高于随机选择负样本的概率。 在定义AUC之前,让我们理解两个基本术语:

AUC(Area Under Curve)的值为ROC曲线下面的面积,若如上所述模型十分准确,则AUC为1。

但现实生活中尤其是工业界不会有如此完美的模型,一般AUC均在0.5到1之间,AUC越高,模型的区分能力越好

若AUC=0.5,即与上图中虚线重合,表示模型的区分能力与 随机猜测 没有差别。若AUC真的小于0.5,请检查一下是不是好坏标签标反了,或者是模型真的很差。

6.平均绝对误差

平均绝对误差是原始值与预测值之差的平均值。 它衡量预测与实际输出还差多远。 但是,它们并没有给我们提供任何关于错误方向的信息,即不能给出我们的模型到底是低于预测数据还是高于预测数据。 在数学上,它表示为:

7.均方误差(MSE

均方误差(MSE)与平均绝对误差非常相似,唯一的区别是MSE取原始值与预测值之差的平方的平均值。 MSE的优点是计算梯度更容易,而平均绝对误差需要复杂的线性编程工具来计算梯度。 由于我们采用误差的平方,更大的误差的影响变得更明显,因此模型现在可以更多地关注更大的误差。

 

 

 

这篇关于机器学习算法模型评价指标ROC AUC的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999420

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何评价Ubuntu 24.04 LTS? Ubuntu 24.04 LTS新功能亮点和重要变化

《如何评价Ubuntu24.04LTS?Ubuntu24.04LTS新功能亮点和重要变化》Ubuntu24.04LTS即将发布,带来一系列提升用户体验的显著功能,本文深入探讨了该版本的亮... Ubuntu 24.04 LTS,代号 Noble NumBAT,正式发布下载!如果你在使用 Ubuntu 23.

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;