论文阅读:基于改进 YOLOv5算法的密集动态目标检测方法

2024-05-16 03:20

本文主要是介绍论文阅读:基于改进 YOLOv5算法的密集动态目标检测方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

概要

Motivation

整体架构流程

技术细节

小结


论文地址:基于改进YOLOv5算法的密集动态目标检测方法 - 中国知网 (cnki.net)

概要

目的:提出一种基于 YOLOv5改进的检测算法,解决密集动态目标检测精度低及易漏检的问题。

方法:在 YOLOv5的主干网络中使用 QARepNeXt结构提高深度学习模型训练速度;引入 S2-MLPv2注意力机制改善遮挡情况下检测效果差的问题;将具有动态聚焦机制的边界回归损失函数 Wise-IoU 替代 原有损失函数提高收敛速度。

结果:通过在公开数据集上的实验验证,改进算法在密集行人检测任务中表现出了更高的检测精度、更低的漏检率和更好的检测效果。相较于原始YOLOv5s网络模型,改进后的算法模型在复杂环境下展示了更强的鲁棒性和泛化能力,能够有效应用于密集动态目标检测及其相关领域。

结论:通过引入QARepNeXt结构、S2-MLPv2注意力机制和Wise-IoU损失函数,优化了YOLOv5s网络,提升了密集动态目标检测的性能。这一改进算法在实际应用中具有重要的潜力,尤其在行人检测等密集场景下表现出色,为相关领域的研究提供了新的思路和方法。

Motivation

  • 密集动态目标检测,遮挡导致的检测精度低和漏检率高。
  • 于行人尺度较小,检测难 度也增加。

整体架构流程

一种基于改进YOLOv5s算法的密集动态目标检测方法。主要改进包括:

1. 主干网络优化:引入QARepNeXt模块,增强网络特征提取和融合能力,提高检测精度。
2. 特征融合阶段改进:加入S2-MLPv2注意力机制,有效提取图像关键信息,提高对遮挡目标的关注度。
3. 损失函数替换:采用Wise-IoU损失函数,提高模型的收敛能力和检测精度。

技术细节

YOLOv5原始主干网络采用3×3的卷积模块,对非密集场景下的目标识别任务具有出色的能力,但在密集场景和被识别物有遮挡的情况下很难提取到有效特征信息,为此论文研究对传统的 RepVGG 结构进行修改,引入更加友好的量化感知模块 QARepNeXt。

为使网络具有更好的量化性能,引用一种在 RepVGG 的基础上改进的网络结构 QARepVGG(Quantization-AwareRepVGG),不会在训练过程中遭受量化崩溃,与 RepVGG 结构相比其量化性能得到很大程度的提升。

为提高特征信息的利用率,研究引入 S2-MLPv2注意力机制模块。

在对画面中的目标进行检测时,由于视野内可能存在多个目标,算法会生成多个预测框。为了消除冗 余的预测框,通常需要采用非极大值抑制(Non-MaximumSuppression,NMS)方法。NMS算法会根据预 测框的置信度和重叠度进行筛选,保留置信度最高的预测框,并去除与其重叠度高的其他预测框,从而得 到最终的检测结果。这样可以有效地去除冗余的预测框,提高检测的准确性和效率。

小结

针对密集动态目标检测精度低及易漏检的问题,本研究提出了一种基于 YOLOv5s 网络改进的算法模型。改进的算法模型在以下几个方面进行了优化:

1. 主干网络优化:引入了量化性能更佳的 QARepNeXt 结构。QARepNeXt 结构通过优化网络量化性能,提高了特征提取能力。相比原始 YOLOv5s 网络模型,这种改进能够更有效地捕捉并表征图像中的重要特征。

2. 特征融合阶段改进:在特征融合阶段加入了 S2-MLPv2 注意力机制。S2-MLPv2 通过增强特征信息的利用率,提高了网络对遮挡目标的关注度。这使得网络在处理密集和动态目标时,能够更准确地进行检测,减少漏检现象。

3. 损失函数替换:原有网络的损失函数被替换为回归性能更优秀的 Wise-IoU 损失函数。Wise-IoU 损失函数能够更好地衡量预测框与真实框之间的重叠情况,提高检测精度和回收率。

4. 实验验证:在公开数据集上进行了一系列实验。实验结果表明,优化后的算法在测量精确度、回收率和平均精度等方面都有显著提升。相较于原始 YOLOv5s 网络,改进模型表现出了更强的鲁棒性和泛化能力。

综上所述,通过在主干网络、特征融合和损失函数等方面的改进,优化后的 YOLOv5s 算法模型有效提升了密集动态目标检测的精度和可靠性,适用于密集动态目标检测及其相关领域。

这篇关于论文阅读:基于改进 YOLOv5算法的密集动态目标检测方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993732

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri