【算法基础】简单的动态规划!你没见过的全新视角!

2024-05-13 20:36

本文主要是介绍【算法基础】简单的动态规划!你没见过的全新视角!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 动态规划导论
      • 使用动态规划加速斐波那契数列(记忆化)
      • 自底向上的动态规划
      • 经典的动态规划问题

动态规划导论

动态规划的关键是避免重复的计算。通常情况下,动态规划算法解决的问题可以用递归的方法解决。可以先尝试将问题写出最朴素的递归算法,再使用一个表来保存中间结果,这种属于自底向上的动态规划,或者叫做“记忆化搜索”。

一个最经典的例子就是求斐波那契数列。它的递归式是:当 n ≥ 2 n \geq 2 n2时, f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n) = f(n - 1) + f(n - 2) f(n)=f(n1)+f(n2) n = 0 n = 0 n=0 f ( 0 ) = 0 f(0) = 0 f(0)=0 n = 1 n = 1 n=1时, f ( 1 ) = 1 f(1) = 1 f(1)=1。用C++来实现就是下面这样:

int f(int n) {if (n == 0) return 0;if (n == 1) return 1;return f(n - 1) + f(n - 2);
}

它的时间复杂度时 O ( 2 n ) O(2^n) O(2n),因为每一个 f ( n ) f(n) f(n)的计算都要调用两次相似的规模的子问题( f ( n − 1 ) f(n-1) f(n1) f ( n − 2 ) f(n-2) f(n2))。

使用动态规划加速斐波那契数列(记忆化)

递归算法需要指数的时间来计算斐波那契数列。这意味着我们只能处理很小的一些输入。比如要计算 f ( 29 ) f(29) f(29)需要超过一百万次函数调用。

为了加快计算速度,我们注意到子问题的规模仅仅是 O ( n ) O(n) O(n)的。就是说,为了计算 f ( n ) f(n) f(n)我们只需要知道$f(n-1),f(n-1),…,f(0) $。因此,相比于重复计算这些子问题,我们通过把这些问题的结果存在一个表中来避免重复的计算。已经计算过的子问题的调用可以通过这个表马上返回结果,避免了指数指数级别的调用次数。

每一次的调用都会先检查表中数据,这会花费 O ( 1 ) O(1) O(1)的时间。如果我们之前已经计算过了,那就返回结果,否则,正常地计算。总共的时间复杂度是 O ( n ) O(n) O(n)。相对于之前的算法来说是一个巨大的提升。

const int MAXN = 100;
bool found[MAXN];
int memo[MAXN];int f(int n) {if (found[n]) return memo[n];if (n == 0) return 0;if (n == 1) return 1;found[n] = true;return memo[n] = f(n - 1) + f(n - 2);
}

使用记忆化搜索的方法, f ( 29 ) f(29) f(29)的计算只需要57次的调用。不过我们还要注意到这是结果的正确性还取决于我们使用的数据类型,在32位整数类型下,我们最多能计算第46位的斐波那契数。

通常情况下我们会在数组中保存着些数,因为在数组中查找的时间是 O ( 1 ) O(1) O(1)。实际上我们可以使用任何我们喜欢的数据结构来保存这些数。比如maps或者unordered_maps。

比如:

unordered_map<int, int> memo;
int f(int n) {if (memo.count(n)) return memo[n];if (n == 0) return 0;if (n == 1) return 1;return memo[n] = f(n - 1) + f(n - 2);
}

或者类似的:

map<int, int> memo;
int f(int n) {if (memo.count(n)) return memo[n];if (n == 0) return 0;if (n == 1) return 1;return memo[n] = f(n - 1) + f(n - 2);
}

这两种保存数据的方式在通常情况下会比数组要慢,但是当状态是向量或者字符串时,这样保存还是很有用的。

最朴素的计算递归算法时间复杂度的方式是:
每一个子问题计算时间 ∗ 子问题个数 每一个子问题计算时间 * 子问题个数 每一个子问题计算时间子问题个数
使用平衡二叉树(C++中的map)来保存状态信息的话,最终需要 O ( n l o g n ) O(nlogn) O(nlogn)的时间因为每次的插入和查找都会需要 O ( l o g n ) O(logn) O(logn)的时间。而子问题的数量一共有 O ( n ) O(n) O(n)个。

上面这种方式叫做自顶向下的,因为我们从询问的数开始计算,并且计算的过程是从上到下的,通过记忆化的方式保留中间的计算结果。

自底向上的动态规划

到目前位置我们只看到了记忆化搜索这种自顶向下的动态规划。其实我们也可以用自底向上的动态规划来解决问题。自底向上方式和自顶向下的方式完全相反,我们从最底层开始(递归的初始条件(base case)),然后扩展到更多的数。

为了实现自底向上的动态规划,我们需要在数组里初始化初始条件。然后在数组中应用递归式:

const int MAXN = 100;
int fib[MAXN];int f(int n) {fib[0] = 0;fib[1] = 1;for (int i = 2; i <= n; i++) fib[i] = fib[i - 1] + fib[i - 2];return fib[n];
}

当然了,这种写法其实有些愚蠢。因为首先如果我们重复调用f(n),会重复计算。其次我们只需要之前的两个数就可以计算当前的值。因此我们把空间复杂度从 O ( n ) O(n) O(n)减少到 O ( 1 ) O(1) O(1)

代码:

const int MAX_SAVE = 3;
int fib[MAX_SAVE];int f(int n) {fib[0] = 0;fib[1] = 1;for (int i = 2; i <= n; i++)fib[i % MAX_SAVE] = fib[(i - 1) % MAX_SAVE] + fib[(i - 2) % MAX_SAVE];return fib[n % MAX_SAVE];
}

注意到把MAXN变成了MAX_SAVE。这是因为我们需要访问的数其实只有3个。需要的空间和输入无关,根据定义,这就是 O ( 1 ) O(1) O(1)的空间复杂度。并且在这段代码中还使用了一个常用的小技巧(使用模运算)来维护我们需要的数。

上面就是动态规划的基础:不要重复你之前的工作。

一个更好掌握动态规划的方式是学习一些经典的例子。

经典的动态规划问题

  • 0-1 Knapsack
  • Subset Sum
  • Longest Increasing Subsequence
  • Counting all possible paths from top left to bottom right corner of a matrix
  • Longest Common Subsequence
  • Longest Path in a Directed Acyclic Graph (DAG)
  • Coin Change
  • Longest Palindromic Subsequence
  • Rod Cutting
  • Edit Distance
  • Bitmask Dynamic Programming
  • Digit Dynamic Programming
  • Dynamic Programming on Trees

这篇关于【算法基础】简单的动态规划!你没见过的全新视角!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986759

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math