153种2744阶群

2024-05-13 18:32
文章标签 153 阶群 2744

本文主要是介绍153种2744阶群,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GAP4中调用NumberSmallGroups(2744);命令会出错。
陈松良的《2744阶群的构造》一文证明G2744共有153种互不同构的类型,并获得了G的全部构造:(1)当Sylow子群都正规时,G恰有25个彼此不同构的类型;(2)当Sylow 2-子群正规但Sylow 7-子群不正规时,G恰有8个彼此不同构的类型;(3)当Sylow 2-子群不正规但Sylow 7-子群正规时,G恰有120个彼此不同构的类型;(4)当Sylow子群都不正规时,G不存在.
20151029:4种类型153=25+8+120+0
Sylow子群都正规(25个):C1372 x C2、C686 x C2 x C2、
C196 x C14、C2 x C4 x ((C7 x C7) : C7)、C2 x C4 x (C49 : C7)、C98 x C14 x C2、C2 x C2 x C2 x ((C7 x C7) : C7)、C2 x C2 x C2 x (C49 : C7)、C28 x C14 x C7、C14 x C14 x C14、
C1372 x C2、C196 x C14、C2 x C4 x ((C7 x C7) : C7)、C2 x C4 x (C49 : C7)、C28 x C14 x C7、
C686 x C2 x C2、C98 x C14 x C2、C2 x C2 x C2 x ((C7 x C7) : C7)、C2 x C2 x C2 x (C49 : C7)、C14 x C14 x C14
C392 x C7、C196 x C14、C7 x C49 x D8、C7 x C49 x Q8、C98 x C14 x C2、C56 x C7 x C7、C28 x C14 x C7、C7 x C7 x C7 x D8、C7 x C7 x C7 x Q8、C14 x C14 x C14、
Sylow 2-子群正规而Sylow 7-子群不正规(8个):C7 x ((C2 x C2 x C2) : C49)、C7 x C7 x ((C2 x C2 x C2) : C7)、
Sylow 7-子群正规而Sylow 2-子群不正规(120个):C2 x (C343 : C4)、C2 x C2 x D686、C14 x (C49 : C4)、C98 x (C7 : C4)、C2 x (((C7 x C7) : C7) : C4)、C2 x ((C49 : C7) : C4)、C2 x ((C49 x C7) : C4)、C2 x (((C7 x C7) : C7) : C4)、C2 x (((C7 x C7) : C7) : C4)、C2 x D14 x D98、C2 x ((((C7 x C7) : C7) : C2) : C2)、C2 x C14 x D98、C2 x C98 x D14、C2 x C2 x (((C7 x C7) : C7) : C2)、C2 x C2 x ((C49 x C7) : C2)、C2 x C2 x (((C7 x C7) : C7) : C2)、C7 x C14 x (C7 : C4)、C14 x ((C7 x C7) : C4)、C2 x ((C7 x C7 x C7) : C4)、C14 x ((C7 x C7) : C4)、C2 x ((C7 x C7 x C7) : C4)、C14 x D14 x D14、C2 x (((C7 x C7) : C2) x D14)、C2 x ((C7 x ((C7 x C7) : C2)) : C2)、C14 x C14 x D14、C2 x C14 x ((C7 x C7) : C2)、C2 x C2 x ((C7 x C7 x C7) : C2)、
C4 x D686、C28 x D98、C196 x D14、C4 x (((C7 x C7) : C7) : C2)、C4 x ((C49 : C7) : C2)、C4 x ((C49 x C7) : C2)、C4 x (((C7 x C7) : C7) : C2)、C7 x C28 x D14、C28 x ((C7 x C7) : C2)、C4 x ((C7 x C7 x C7) : C2)、
C2 x C2 x D686、C2 x C14 x D98、C2 x C98 x D14、C2 x C2 x (((C7 x C7) : C7) : C2)、C2 x C2 x ((C49 :
C7) : C2)、C2 x C2 x ((C49 x C7) : C2)、C2 x C2 x (((C7 x C7) : C7) : C2)、C14 x C14 x D14、C2 x C14 x ((C7 x C7) : C2)、C2 x C2 x ((C7 x C7 x C7) : C2)、
C7 x (C49 : C8)、C7 x (C49 : Q8)、C28 x D98、C7 x D392、C14 x (C49 : C4)、C7 x ((C98 x C2) : C2)、C2 x C14 x D98、C7 x C7 x (C7 : C8)、C7 x ((C7 x C7) : C8)、C7 x ((C7 x C7) : C8)、C7 x ((C7 : C4) x D14)、C7 x ((C7 x (C7 : C4)) : C2)、C7 x ((C14 x D14) : C2)、C7 x ((C14 x D14) : C2)、C7 x ((C7 x C7) : Q8)、C7 x C7 x (C7 : Q8)、C7 x C28 x D14、C7 x C7 x D56、C7 x C14 x (C7 : C4)、C7 x C7 x ((C14 x C2) : C2)、C7 x ((C7 x C7) : Q8)、C28 x ((C7 x C7) : C2)、C7 x ((C28 x C7) : C2)、C14 x ((C7 x C7) : C4)、C7 x ((C14 x C14) : C2)、C7 x ((C7 x C7) : C8)、C7 x ((D14 x D14) : C2)、C7 x ((C7 x C7) : Q8)、C14 x ((C7 x C7) : C4)、C14 x D14 x D14、C14 x C14 x D14、C2 x C14 x ((C7 x C7) : C2)、

Sylow子群都不正规(0个):
gap> Factors(2744);
[ 2, 2, 2, 7, 7, 7 ]
gap> n:=2744;;for i in [1..n] do if n mod i=0 then Print(i,",");fi;od;
1,2,4,7,8,14,28,49,56,98,196,343,392,686,1372,2744,
gap> NumberSmallGroups(1372);
38
gap> NumberSmallGroups(686);
15
gap> NumberSmallGroups(392);
44
gap> NumberSmallGroups(343);
5
gap> NumberSmallGroups(196);
12
gap> NumberSmallGroups(98);
5
gap> NumberSmallGroups(56);
13
gap> NumberSmallGroups(49);
2
gap> NumberSmallGroups(28);
4
gap> NumberSmallGroups(14);
2
gap> NumberSmallGroups(8);
5
gap> NumberSmallGroups(4);
2
gap> M:=[1,2,4,7,8,14,28,49,56,98,196,343,392,686,1372,2744];;for n in [1..38] do G1372:=SmallGroup(1372,n);;G:=DirectProduct(G1372,CyclicGroup(2));;Print(IdGroup(G1372));Print("与C_2的直积=");Print(StructureDescription(G));Print(":是否可解:",IsSolvableGroup(G),",","是否幂零:",IsNilpotentGroup(G),",","自同构群:",Order(AutomorphismGroup(G)),",");L:=List(Elements(G),Order);;for i in M do Print(Size(Positions(L,i)),","); od;Print("\n");od;
[ 1372, 1 ]与C_2的直积=C2 x (C343 : C4):是否可解:true,是否幂零:false,自同构群:806736,1,3,1372,6,
0,18,0,42,0,126,0,294,0,882,0,0,
[ 1372, 2 ]与C_2的直积=C1372 x C2:是否可解:true,是否幂零:true,自同构群:2352,1,3,4,6,0,18,24,42,
0,126,168,294,0,882,1176,0,
[ 1372, 3 ]与C_2的直积=C2 x C2 x D686:是否可解:true,是否幂零:false,自同构群:2420208,1,1375,0,6,
0,18,0,42,0,126,0,294,0,882,0,0,
[ 1372, 4 ]与C_2的直积=C686 x C2 x C2:是否可解:true,是否幂零:true,自同构群:49392,1,7,0,6,0,42,0,
42,0,294,0,294,0,2058,0,0,
[ 1372, 5 ]与C_2的直积=C14 x (C49 : C4):是否可解:true,是否幂零:false,自同构群:98784,1,3,196,48,
0,144,1176,294,0,882,0,0,0,0,0,0,
[ 1372, 6 ]与C_2的直积=C98 x (C7 : C4):是否可解:true,是否幂零:false,自同构群:14112,1,3,28,48,0,
144,168,294,0,882,1176,0,0,0,0,0,
[ 1372, 7 ]与C_2的直积=C2 x (((C7 x C7) : C7) : C4):是否可解:true,是否幂零:false,自同构群:98784,
1,3,196,342,0,1026,1176,0,0,0,0,0,0,0,0,0,
[ 1372, 8 ]与C_2的直积=C2 x ((C49 : C7) : C4):是否可解:true,是否幂零:false,自同构群:16464,1,3,
196,48,0,144,1176,294,0,882,0,0,0,0,0,0,
[ 1372, 9 ]与C_2的直积=C2 x ((C49 x C7) : C4):是否可解:true,是否幂零:false,自同构群:33882912,1,
3,1372,48,0,144,0,294,0,882,0,0,0,0,0,0,
[ 1372, 10 ]与C_2的直积=C2 x (((C7 x C7) : C7) : C4):是否可解:true,是否幂零:false,自同构群:
790272,1,3,196,342,0,1026,1176,0,0,0,0,0,0,0,0,0,
[ 1372, 11 ]与C_2的直积=C196 x C14:是否可解:true,是否幂零:true,自同构群:98784,1,3,4,48,0,144,
192,294,0,882,1176,0,0,0,0,0,
[ 1372, 12 ]与C_2的直积=C2 x C4 x ((C7 x C7) : C7):是否可解:true,是否幂零:true,自同构群:790272,
1,3,4,342,0,1026,1368,0,0,0,0,0,0,0,0,0,
[ 1372, 13 ]与C_2的直积=C2 x C4 x (C49 : C7):是否可解:true,是否幂零:true,自同构群:16464,1,3,4,
48,0,144,192,294,0,882,1176,0,0,0,0,0,
[ 1372, 14 ]与C_2的直积=C2 x (((C7 x C7) : C7) : C4):是否可解:true,是否幂零:false,自同构群:9408,
1,99,196,342,0,930,1176,0,0,0,0,0,0,0,0,0,
[ 1372, 15 ]与C_2的直积=C2 x D14 x D98:是否可解:true,是否幂零:false,自同构群:345744,1,799,0,48,
0,720,0,294,0,882,0,0,0,0,0,0,
[ 1372, 16
 ]与C_2的直积=C2 x ((((C7 x C7) : C7) : C2) : C2):是否可解:true,是否幂零:false,自同构群:98784,1,
295,0,342,0,2106,0,0,0,0,0,0,0,0,0,0,
[ 1372, 17 ]与C_2的直积=C2 x C14 x D98:是否可解:true,是否幂零:false,自同构群:296352,1,199,0,48,
0,1320,0,294,0,882,0,0,0,0,0,0,
[ 1372, 18 ]与C_2的直积=C2 x C98 x D14:是否可解:true,是否幂零:false,自同构群:42336,1,31,0,48,0,
312,0,294,0,2058,0,0,0,0,0,0,
[ 1372, 19 ]与C_2的直积=C2 x C2 x (((C7 x C7) : C7) : C2):是否可解:true,是否幂零:false,自同构群:
296352,1,199,0,342,0,2202,0,0,0,0,0,0,0,0,0,0,
[ 1372, 20 ]与C_2的直积=C2 x C2 x ((C49 : C7) : C2):是否可解:true,是否幂零:false,自同构群:49392,
1,199,0,48,0,1320,0,294,0,882,0,0,0,0,0,0,
[ 1372, 21 ]与C_2的直积=C2 x C2 x ((C49 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
101648736,1,1375,0,48,0,144,0,294,0,882,0,0,0,0,0,0,
[ 1372, 22 ]与C_2的直积=C2 x C2 x (((C7 x C7) : C7) : C2):是否可解:true,是否幂零:false,自同构群:
2370816,1,199,0,342,0,2202,0,0,0,0,0,0,0,0,0,0,
[ 1372, 23 ]与C_2的直积=C98 x C14 x C2:是否可解:true,是否幂零:true,自同构群:2074464,1,7,0,48,0,
336,0,294,0,2058,0,0,0,0,0,0,
[ 1372, 24 ]与C_2的直积=C2 x C2 x C2 x ((C7 x C7) : C7):是否可解:true,是否幂零:true,自同构群:
16595712,1,7,0,342,0,2394,0,0,0,0,0,0,0,0,0,0,
[ 1372, 25 ]与C_2的直积=C2 x C2 x C2 x (C49 : C7):是否可解:true,是否幂零:true,自同构群:345744,1,
7,0,48,0,336,0,294,0,2058,0,0,0,0,0,0,
[ 1372, 26 ]与C_2的直积=C7 x C14 x (C7 : C4):是否可解:true,是否幂零:false,自同构群:677376,1,3,
28,342,0,1026,1344,0,0,0,0,0,0,0,0,0,
[ 1372, 27 ]与C_2的直积=C14 x ((C7 x C7) : C4):是否可解:true,是否幂零:false,自同构群:4741632,1,
3,196,342,0,1026,1176,0,0,0,0,0,0,0,0,0,
[ 1372, 28 ]与C_2的直积=C2 x ((C7 x C7 x C7) : C4):是否可解:true,是否幂零:false,自同构群:
92703647232,1,3,1372,342,0,1026,0,0,0,0,0,0,0,0,0,0,
[ 1372, 29 ]与C_2的直积=C28 x C14 x C7:是否可解:true,是否幂零:true,自同构群:270273024,1,3,4,342,
0,1026,1368,0,0,0,0,0,0,0,0,0,
[ 1372, 30 ]与C_2的直积=C14 x ((C7 x C7) : C4):是否可解:true,是否幂零:false,自同构群:56448,1,99,
196,342,0,930,1176,0,0,0,0,0,0,0,0,0,
[ 1372, 31 ]与C_2的直积=C2 x ((C7 x C7 x C7) : C4):是否可解:true,是否幂零:false,自同构群:395136,
1,99,1372,342,0,930,0,0,0,0,0,0,0,0,0,0,
[ 1372, 32 ]与C_2的直积=C14 x D14 x D14:是否可解:true,是否幂零:false,自同构群:84672,1,127,0,342,
0,2274,0,0,0,0,0,0,0,0,0,0,
[ 1372, 33 ]与C_2的直积=C2 x (((C7 x C7) : C2) x D14):是否可解:true,是否幂零:false,自同构群:
16595712,1,799,0,342,0,1602,0,0,0,0,0,0,0,0,0,0,
[ 1372, 34
 ]与C_2的直积=C2 x ((C7 x ((C7 x C7) : C2)) : C2):是否可解:true,是否幂零:false,自同构群:1778112,
1,295,0,342,0,2106,0,0,0,0,0,0,0,0,0,0,
[ 1372, 35 ]与C_2的直积=C14 x C14 x D14:是否可解:true,是否幂零:false,自同构群:2032128,1,31,0,
342,0,2370,0,0,0,0,0,0,0,0,0,0,
[ 1372, 36 ]与C_2的直积=C2 x C14 x ((C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
14224896,1,199,0,342,0,2202,0,0,0,0,0,0,0,0,0,0,
[ 1372, 37 ]与C_2的直积=C2 x C2 x ((C7 x C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
278110941696,1,1375,0,342,0,1026,0,0,0,0,0,0,0,0,0,0,
[ 1372, 38 ]与C_2的直积=C14 x C14 x C14:是否可解:true,是否幂零:true,自同构群:5675733504,1,7,0,
342,0,2394,0,0,0,0,0,0,0,0,0,0,
gap> for n in [1..38] do G1372:=SmallGroup(1372,n);;g:=DirectProduct(G1372,CyclicGroup(2));;gid:=StructureDescription(g);Print(gid,"是否幂零:",IsNilpotentGroup(g));s:=Elements(g);;sl2:=SylowSubgroup(g,2);;Print(IdGroup(sl2),IsSubnormal(g,sl2));sl7:=SylowSubgroup(g,7);;Print(IdGroup(sl7),IsSubnormal(g,sl7),"\n");od;
C2 x (C343 : C4)是否幂零:false[ 8, 2 ]false[ 343, 1 ]true
C1372 x C2是否幂零:true[ 8, 2 ]true[ 343, 1 ]true
C2 x C2 x D686是否幂零:false[ 8, 5 ]false[ 343, 1 ]true
C686 x C2 x C2是否幂零:true[ 8, 5 ]true[ 343, 1 ]true
C14 x (C49 : C4)是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C98 x (C7 : C4)是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C2 x (((C7 x C7) : C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 3 ]true
C2 x ((C49 : C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 4 ]true
C2 x ((C49 x C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C2 x (((C7 x C7) : C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 3 ]true
C196 x C14是否幂零:true[ 8, 2 ]true[ 343, 2 ]true
C2 x C4 x ((C7 x C7) : C7)是否幂零:true[ 8, 2 ]true[ 343, 3 ]true
C2 x C4 x (C49 : C7)是否幂零:true[ 8, 2 ]true[ 343, 4 ]true
C2 x (((C7 x C7) : C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 3 ]true
C2 x D14 x D98是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C2 x ((((C7 x C7) : C7) : C2) : C2)是否幂零:false[ 8, 5 ]false[ 343, 3 ]true
C2 x C14 x D98是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C2 x C98 x D14是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C2 x C2 x (((C7 x C7) : C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 3 ]true
C2 x C2 x ((C49 : C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 4 ]true
C2 x C2 x ((C49 x C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C2 x C2 x (((C7 x C7) : C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 3 ]true
C98 x C14 x C2是否幂零:true[ 8, 5 ]true[ 343, 2 ]true
C2 x C2 x C2 x ((C7 x C7) : C7)是否幂零:true[ 8, 5 ]true[ 343, 3 ]true
C2 x C2 x C2 x (C49 : C7)是否幂零:true[ 8, 5 ]true[ 343, 4 ]true
C7 x C14 x (C7 : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C14 x ((C7 x C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C2 x ((C7 x C7 x C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C28 x C14 x C7是否幂零:true[ 8, 2 ]true[ 343, 5 ]true
C14 x ((C7 x C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C2 x ((C7 x C7 x C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C14 x D14 x D14是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C2 x (((C7 x C7) : C2) x D14)是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C2 x ((C7 x ((C7 x C7) : C2)) : C2)是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C14 x C14 x D14是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C2 x C14 x ((C7 x C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C2 x C2 x ((C7 x C7 x C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C14 x C14 x C14是否幂零:true[ 8, 5 ]true[ 343, 5 ]true
gap> M:=[1,2,4,7,8,14,28,49,56,98,196,343,392,686,1372,2744];;for n in [1..15] do G686:=SmallGroup(686,n);;G:=DirectProduct(G686,CyclicGroup(4));;Print(IdGroup(G686));Print("与C_4的直积=");Print(StructureDescription(G));Print(":是否可解:",IsSolvableGroup(G),",","是否幂零:",IsNilpotentGroup(G),",","自同构群:",Order(AutomorphismGroup(G)),",");L:=List(Elements(G),Order);;for i in M do Print(Size(Positions(L,i)),","); od;Print("\n");od;
[ 686, 1 ]与C_4的直积=C4 x D686:是否可解:true,是否幂零:false,自同构群:403368,1,687,688,6,0,6,12,
42,0,42,84,294,0,294,588,0,
[ 686, 2 ]与C_4的直积=C1372 x C2:是否可解:true,是否幂零:true,自同构群:2352,1,3,4,6,0,18,24,42,0,
126,168,294,0,882,1176,0,
[ 686, 3 ]与C_4的直积=C28 x D98:是否可解:true,是否幂零:false,自同构群:49392,1,99,100,48,0,636,
684,294,0,294,588,0,0,0,0,0,
[ 686, 4 ]与C_4的直积=C196 x D14:是否可解:true,是否幂零:false,自同构群:7056,1,15,16,48,0,132,
180,294,0,882,1176,0,0,0,0,0,
[ 686, 5 ]与C_4的直积=C4 x (((C7 x C7) : C7) : C2):是否可解:true,是否幂零:false,自同构群:49392,
1,99,100,342,0,930,1272,0,0,0,0,0,0,0,0,0,
[ 686, 6 ]与C_4的直积=C4 x ((C49 : C7) : C2):是否可解:true,是否幂零:false,自同构群:8232,1,99,
100,48,0,636,684,294,0,294,588,0,0,0,0,0,
[ 686, 7 ]与C_4的直积=C4 x ((C49 x C7) : C2):是否可解:true,是否幂零:false,自同构群:16941456,1,
687,688,48,0,48,96,294,0,294,588,0,0,0,0,0,
[ 686, 8 ]与C_4的直积=C4 x (((C7 x C7) : C7) : C2):是否可解:true,是否幂零:false,自同构群:395136,
1,99,100,342,0,930,1272,0,0,0,0,0,0,0,0,0,
[ 686, 9 ]与C_4的直积=C196 x C14:是否可解:true,是否幂零:true,自同构群:98784,1,3,4,48,0,144,192,
294,0,882,1176,0,0,0,0,0,
[ 686, 10 ]与C_4的直积=C2 x C4 x ((C7 x C7) : C7):是否可解:true,是否幂零:true,自同构群:790272,1,
3,4,342,0,1026,1368,0,0,0,0,0,0,0,0,0,
[ 686, 11 ]与C_4的直积=C2 x C4 x (C49 : C7):是否可解:true,是否幂零:true,自同构群:16464,1,3,4,48,
0,144,192,294,0,882,1176,0,0,0,0,0,
[ 686, 12 ]与C_4的直积=C7 x C28 x D14:是否可解:true,是否幂零:false,自同构群:338688,1,15,16,342,
0,1014,1356,0,0,0,0,0,0,0,0,0,
[ 686, 13 ]与C_4的直积=C28 x ((C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:2370816,1,
99,100,342,0,930,1272,0,0,0,0,0,0,0,0,0,
[ 686, 14 ]与C_4的直积=C4 x ((C7 x C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
46351823616,1,687,688,342,0,342,684,0,0,0,0,0,0,0,0,0,
[ 686, 15 ]与C_4的直积=C28 x C14 x C7:是否可解:true,是否幂零:true,自同构群:270273024,1,3,4,342,
0,1026,1368,0,0,0,0,0,0,0,0,0,
gap> for n in [1..15] do G:=SmallGroup(686,n);;g:=DirectProduct(G,SmallGroup(4,1));;gid:=StructureDescription(g);Print(gid,"是否幂零:",IsNilpotentGroup(g));s:=Elements(g);;sl2:=SylowSubgroup(g,2);;Print(IdGroup(sl2),IsSubnormal(g,sl2));sl7:=SylowSubgroup(g,7);;Print(IdGroup(sl7),IsSubnormal(g,sl7),"\n");od;
C4 x D686是否幂零:false[ 8, 2 ]false[ 343, 1 ]true
C1372 x C2是否幂零:true[ 8, 2 ]true[ 343, 1 ]true
C28 x D98是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C196 x D14是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C4 x (((C7 x C7) : C7) : C2)是否幂零:false[ 8, 2 ]false[ 343, 3 ]true
C4 x ((C49 : C7) : C2)是否幂零:false[ 8, 2 ]false[ 343, 4 ]true
C4 x ((C49 x C7) : C2)是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C4 x (((C7 x C7) : C7) : C2)是否幂零:false[ 8, 2 ]false[ 343, 3 ]true
C196 x C14是否幂零:true[ 8, 2 ]true[ 343, 2 ]true
C2 x C4 x ((C7 x C7) : C7)是否幂零:true[ 8, 2 ]true[ 343, 3 ]true
C2 x C4 x (C49 : C7)是否幂零:true[ 8, 2 ]true[ 343, 4 ]true
C7 x C28 x D14是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C28 x ((C7 x C7) : C2)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C4 x ((C7 x C7 x C7) : C2)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C28 x C14 x C7是否幂零:true[ 8, 2 ]true[ 343, 5 ]true
gap> M:=[1,2,4,7,8,14,28,49,56,98,196,343,392,686,1372,2744];;for n in [1..15] do G686:=SmallGroup(686,n);;G:=DirectProduct(G686,ElementaryAbelianGroup(4));;Print(IdGroup(G686));Print("与K_4的直积=");Print(StructureDescription(G));Print(": 是否可解:",IsSolvableGroup(G),",","是否幂零:",IsNilpotentGroup(G),",","自同构群:",Order(AutomorphismGroup(G)),",");L:=List(Elements(G),Order);;for i in M do Print(Size(Positions(L,i)),","); od;Print("\n");od;
[ 686, 1 ]与K_4的直积=C2 x C2 x D686:是否可解:true,是否幂零:false,自同构群:2420208,1,1375,0,6,0,
18,0,42,0,126,0,294,0,882,0,0,
[ 686, 2 ]与K_4的直积=C686 x C2 x C2:是否可解:true,是否幂零:true,自同构群:49392,1,7,0,6,0,42,0,
42,0,294,0,294,0,2058,0,0,
[ 686, 3 ]与K_4的直积=C2 x C14 x D98:是否可解:true,是否幂零:false,自同构群:296352,1,199,0,48,0,
1320,0,294,0,882,0,0,0,0,0,0,
[ 686, 4 ]与K_4的直积=C2 x C98 x D14:是否可解:true,是否幂零:false,自同构群:42336,1,31,0,48,0,
312,0,294,0,2058,0,0,0,0,0,0,
[ 686, 5 ]与K_4的直积=C2 x C2 x (((C7 x C7) : C7) : C2):是否可解:true,是否幂零:false,自同构群:
296352,1,199,0,342,0,2202,0,0,0,0,0,0,0,0,0,0,
[ 686, 6 ]与K_4的直积=C2 x C2 x ((C49 : C7) : C2):是否可解:true,是否幂零:false,自同构群:49392,1,
199,0,48,0,1320,0,294,0,882,0,0,0,0,0,0,
[ 686, 7 ]与K_4的直积=C2 x C2 x ((C49 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
101648736,1,1375,0,48,0,144,0,294,0,882,0,0,0,0,0,0,
[ 686, 8 ]与K_4的直积=C2 x C2 x (((C7 x C7) : C7) : C2):是否可解:true,是否幂零:false,自同构群:
2370816,1,199,0,342,0,2202,0,0,0,0,0,0,0,0,0,0,
[ 686, 9 ]与K_4的直积=C98 x C14 x C2:是否可解:true,是否幂零:true,自同构群:2074464,1,7,0,48,0,
336,0,294,0,2058,0,0,0,0,0,0,
[ 686, 10 ]与K_4的直积=C2 x C2 x C2 x ((C7 x C7) : C7):是否可解:true,是否幂零:true,自同构群:
16595712,1,7,0,342,0,2394,0,0,0,0,0,0,0,0,0,0,
[ 686, 11 ]与K_4的直积=C2 x C2 x C2 x (C49 : C7):是否可解:true,是否幂零:true,自同构群:345744,1,
7,0,48,0,336,0,294,0,2058,0,0,0,0,0,0,
[ 686, 12 ]与K_4的直积=C14 x C14 x D14:是否可解:true,是否幂零:false,自同构群:2032128,1,31,0,342,
0,2370,0,0,0,0,0,0,0,0,0,0,
[ 686, 13 ]与K_4的直积=C2 x C14 x ((C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
14224896,1,199,0,342,0,2202,0,0,0,0,0,0,0,0,0,0,
[ 686, 14 ]与K_4的直积=C2 x C2 x ((C7 x C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
278110941696,1,1375,0,342,0,1026,0,0,0,0,0,0,0,0,0,0,
[ 686, 15 ]与K_4的直积=C14 x C14 x C14:是否可解:true,是否幂零:true,自同构群:5675733504,1,7,0,
342,0,2394,0,0,0,0,0,0,0,0,0,0,
gap> for n in [1..15] do G:=SmallGroup(686,n);;g:=DirectProduct(G,SmallGroup(4,2));;gid:=StructureDescription(g);Print(gid,"是否幂零:",IsNilpotentGroup(g));s:=Elements(g);;sl2:=SylowSubgroup(g,2);;Print(IdGroup(sl2),IsSubnormal(g,sl2));sl7:=SylowSubgroup(g,7);;Print(IdGroup(sl7),IsSubnormal(g,sl7),"\n");od;
C2 x C2 x D686是否幂零:false[ 8, 5 ]false[ 343, 1 ]true
C686 x C2 x C2是否幂零:true[ 8, 5 ]true[ 343, 1 ]true
C2 x C14 x D98是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C2 x C98 x D14是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C2 x C2 x (((C7 x C7) : C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 3 ]true
C2 x C2 x ((C49 : C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 4 ]true
C2 x C2 x ((C49 x C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C2 x C2 x (((C7 x C7) : C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 3 ]true
C98 x C14 x C2是否幂零:true[ 8, 5 ]true[ 343, 2 ]true
C2 x C2 x C2 x ((C7 x C7) : C7)是否幂零:true[ 8, 5 ]true[ 343, 3 ]true
C2 x C2 x C2 x (C49 : C7)是否幂零:true[ 8, 5 ]true[ 343, 4 ]true
C14 x C14 x D14是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C2 x C14 x ((C7 x C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C2 x C2 x ((C7 x C7 x C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C14 x C14 x C14是否幂零:true[ 8, 5 ]true[ 343, 5 ]true
gap> M:=[1,2,4,7,8,14,28,49,56,98,196,343,392,686,1372,2744];;for n in [1..44] do G392:=SmallGroup(392,n);;G:=DirectProduct(G392,CyclicGroup(7));;Print(IdGroup(G392));Print("与C_7的直积=");Print(StructureDescription(G));Print(":是否可解:",IsSolvableGroup(G),",","是否幂零:",IsNilpotentGroup(G),",","自同构群:",Order(AutomorphismGroup(G)),",");L:=List(Elements(G),Order);;for i in M do Print(Size(Positions(L,i)),","); od;Print("\n");od;
[ 392, 1 ]与C_7的直积=C7 x (C49 : C8):是否可解:true,是否幂零:false,自同构群:49392,1,1,2,48,196,
48,96,294,1176,294,588,0,0,0,0,0,
[ 392, 2 ]与C_7的直积=C392 x C7:是否可解:true,是否幂零:true,自同构群:49392,1,1,2,48,4,48,96,294,
192,294,588,0,1176,0,0,0,
[ 392, 3 ]与C_7的直积=C7 x (C49 : Q8):是否可解:true,是否幂零:false,自同构群:98784,1,1,198,48,0,
48,1272,294,0,294,588,0,0,0,0,0,
[ 392, 4 ]与C_7的直积=C28 x D98:是否可解:true,是否幂零:false,自同构群:49392,1,99,100,48,0,636,
684,294,0,294,588,0,0,0,0,0,
[ 392, 5 ]与C_7的直积=C7 x D392:是否可解:true,是否幂零:false,自同构群:98784,1,197,2,48,0,1224,
96,294,0,294,588,0,0,0,0,0,
[ 392, 6 ]与C_7的直积=C14 x (C49 : C4):是否可解:true,是否幂零:false,自同构群:98784,1,3,196,48,0,
144,1176,294,0,882,0,0,0,0,0,0,
[ 392, 7 ]与C_7的直积=C7 x ((C98 x C2) : C2):是否可解:true,是否幂零:false,自同构群:49392,1,101,
98,48,0,732,588,294,0,882,0,0,0,0,0,0,
[ 392, 8 ]与C_7的直积=C196 x C14:是否可解:true,是否幂零:true,自同构群:98784,1,3,4,48,0,144,192,
294,0,882,1176,0,0,0,0,0,
[ 392, 9 ]与C_7的直积=C7 x C49 x D8:是否可解:true,是否幂零:true,自同构群:98784,1,5,2,48,0,240,
96,294,0,1470,588,0,0,0,0,0,
[ 392, 10 ]与C_7的直积=C7 x C49 x Q8:是否可解:true,是否幂零:true,自同构群:296352,1,1,6,48,0,48,
288,294,0,294,1764,0,0,0,0,0,
[ 392, 11 ]与C_7的直积=C7 x ((C2 x C2 x C2) : C49):是否可解:true,是否幂零:false,自同构群:345744,
1,7,0,48,0,336,0,2352,0,0,0,0,0,0,0,0,
[ 392, 12 ]与C_7的直积=C2 x C14 x D98:是否可解:true,是否幂零:false,自同构群:296352,1,199,0,48,0,
1320,0,294,0,882,0,0,0,0,0,0,
[ 392, 13 ]与C_7的直积=C98 x C14 x C2:是否可解:true,是否幂零:true,自同构群:2074464,1,7,0,48,0,
336,0,294,0,2058,0,0,0,0,0,0,
[ 392, 14 ]与C_7的直积=C7 x C7 x (C7 : C8):是否可解:true,是否幂零:false,自同构群:338688,1,1,2,
342,28,342,684,0,1344,0,0,0,0,0,0,0,
[ 392, 15 ]与C_7的直积=C7 x ((C7 x C7) : C8):是否可解:true,是否幂零:false,自同构群:2370816,1,1,
2,342,196,342,684,0,1176,0,0,0,0,0,0,0,
[ 392, 16 ]与C_7的直积=C56 x C7 x C7:是否可解:true,是否幂零:true,自同构群:135136512,1,1,2,342,4,
342,684,0,1368,0,0,0,0,0,0,0,
[ 392, 17 ]与C_7的直积=C7 x ((C7 x C7) : C8):是否可解:true,是否幂零:false,自同构群:56448,1,1,98,
342,196,342,588,0,1176,0,0,0,0,0,0,0,
[ 392, 18 ]与C_7的直积=C7 x ((C7 : C4) x D14):是否可解:true,是否幂零:false,自同构群:42336,1,15,
112,342,0,1014,1260,0,0,0,0,0,0,0,0,0,
[ 392, 19 ]与C_7的直积=C7 x ((C7 x (C7 : C4)) : C2):是否可解:true,是否幂零:false,自同构群:84672,
1,99,28,342,0,930,1344,0,0,0,0,0,0,0,0,0,
[ 392, 20 ]与C_7的直积=C7 x ((C14 x D14) : C2):是否可解:true,是否幂零:false,自同构群:84672,1,29,
98,342,0,1686,588,0,0,0,0,0,0,0,0,0,
[ 392, 21 ]与C_7的直积=C7 x ((C14 x D14) : C2):是否可解:true,是否幂零:false,自同构群:42336,1,
113,14,342,0,1602,672,0,0,0,0,0,0,0,0,0,
[ 392, 22 ]与C_7的直积=C7 x ((C7 x C7) : Q8):是否可解:true,是否幂零:false,自同构群:84672,1,1,
126,342,0,342,1932,0,0,0,0,0,0,0,0,0,
[ 392, 23 ]与C_7的直积=C7 x C7 x (C7 : Q8):是否可解:true,是否幂零:false,自同构群:677376,1,1,30,
342,0,342,2028,0,0,0,0,0,0,0,0,0,
[ 392, 24 ]与C_7的直积=C7 x C28 x D14:是否可解:true,是否幂零:false,自同构群:338688,1,15,16,342,
0,1014,1356,0,0,0,0,0,0,0,0,0,
[ 392, 25 ]与C_7的直积=C7 x C7 x D56:是否可解:true,是否幂零:false,自同构群:677376,1,29,2,342,0,
1686,684,0,0,0,0,0,0,0,0,0,
[ 392, 26 ]与C_7的直积=C7 x C14 x (C7 : C4):是否可解:true,是否幂零:false,自同构群:677376,1,3,28,
342,0,1026,1344,0,0,0,0,0,0,0,0,0,
[ 392, 27 ]与C_7的直积=C7 x C7 x ((C14 x C2) : C2):是否可解:true,是否幂零:false,自同构群:338688,
1,17,14,342,0,1698,672,0,0,0,0,0,0,0,0,0,
[ 392, 28 ]与C_7的直积=C7 x ((C7 x C7) : Q8):是否可解:true,是否幂零:false,自同构群:4741632,1,1,
198,342,0,342,1860,0,0,0,0,0,0,0,0,0,
[ 392, 29 ]与C_7的直积=C28 x ((C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:2370816,1,
99,100,342,0,930,1272,0,0,0,0,0,0,0,0,0,
[ 392, 30 ]与C_7的直积=C7 x ((C28 x C7) : C2):是否可解:true,是否幂零:false,自同构群:4741632,1,
197,2,342,0,1518,684,0,0,0,0,0,0,0,0,0,
[ 392, 31 ]与C_7的直积=C14 x ((C7 x C7) : C4):是否可解:true,是否幂零:false,自同构群:4741632,1,3,
196,342,0,1026,1176,0,0,0,0,0,0,0,0,0,
[ 392, 32 ]与C_7的直积=C7 x ((C14 x C14) : C2):是否可解:true,是否幂零:false,自同构群:2370816,1,
101,98,342,0,1614,588,0,0,0,0,0,0,0,0,0,
[ 392, 33 ]与C_7的直积=C28 x C14 x C7:是否可解:true,是否幂零:true,自同构群:270273024,1,3,4,342,
0,1026,1368,0,0,0,0,0,0,0,0,0,
[ 392, 34 ]与C_7的直积=C7 x C7 x C7 x D8:是否可解:true,是否幂零:true,自同构群:270273024,1,5,2,
342,0,1710,684,0,0,0,0,0,0,0,0,0,
[ 392, 35 ]与C_7的直积=C7 x C7 x C7 x Q8:是否可解:true,是否幂零:true,自同构群:810819072,1,1,6,
342,0,342,2052,0,0,0,0,0,0,0,0,0,
[ 392, 36 ]与C_7的直积=C7 x ((C7 x C7) : C8):是否可解:true,是否幂零:false,自同构群:28224,1,49,
98,342,196,294,588,0,1176,0,0,0,0,0,0,0,
[ 392, 37 ]与C_7的直积=C7 x ((D14 x D14) : C2):是否可解:true,是否幂零:false,自同构群:14112,1,77,
98,342,0,1638,588,0,0,0,0,0,0,0,0,0,
[ 392, 38 ]与C_7的直积=C7 x ((C7 x C7) : Q8):是否可解:true,是否幂零:false,自同构群:42336,1,49,
294,342,0,294,1764,0,0,0,0,0,0,0,0,0,
[ 392, 39 ]与C_7的直积=C7 x C7 x ((C2 x C2 x C2) : C7):是否可解:true,是否幂零:false,自同构群:
16595712,1,7,0,2400,0,336,0,0,0,0,0,0,0,0,0,0,
[ 392, 40 ]与C_7的直积=C14 x ((C7 x C7) : C4):是否可解:true,是否幂零:false,自同构群:56448,1,99,
196,342,0,930,1176,0,0,0,0,0,0,0,0,0,
[ 392, 41 ]与C_7的直积=C14 x D14 x D14:是否可解:true,是否幂零:false,自同构群:84672,1,127,0,342,
0,2274,0,0,0,0,0,0,0,0,0,0,
[ 392, 42 ]与C_7的直积=C14 x C14 x D14:是否可解:true,是否幂零:false,自同构群:2032128,1,31,0,342,
0,2370,0,0,0,0,0,0,0,0,0,0,
[ 392, 43 ]与C_7的直积=C2 x C14 x ((C7 x C7) : C2):是否可解:true,是否幂零:false,自同构群:
14224896,1,199,0,342,0,2202,0,0,0,0,0,0,0,0,0,0,
[ 392, 44 ]与C_7的直积=C14 x C14 x C14:是否可解:true,是否幂零:true,自同构群:5675733504,1,7,0,
342,0,2394,0,0,0,0,0,0,0,0,0,0,
gap> for n in [1..44] do G:=SmallGroup(392,n);;g:=DirectProduct(G,SmallGroup(7,1));;gid:=StructureDescription(g);Print(gid,"是否幂零:",IsNilpotentGroup(g));s:=Elements(g);;sl2:=SylowSubgroup(g,2);;Print(IdGroup(sl2),IsSubnormal(g,sl2));sl7:=SylowSubgroup(g,7);;Print(IdGroup(sl7),IsSubnormal(g,sl7),"\n");od;
C7 x (C49 : C8)是否幂零:false[ 8, 1 ]false[ 343, 2 ]true
C392 x C7是否幂零:true[ 8, 1 ]true[ 343, 2 ]true
C7 x (C49 : Q8)是否幂零:false[ 8, 4 ]false[ 343, 2 ]true
C28 x D98是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C7 x D392是否幂零:false[ 8, 3 ]false[ 343, 2 ]true
C14 x (C49 : C4)是否幂零:false[ 8, 2 ]false[ 343, 2 ]true
C7 x ((C98 x C2) : C2)是否幂零:false[ 8, 3 ]false[ 343, 2 ]true
C196 x C14是否幂零:true[ 8, 2 ]true[ 343, 2 ]true
C7 x C49 x D8是否幂零:true[ 8, 3 ]true[ 343, 2 ]true
C7 x C49 x Q8是否幂零:true[ 8, 4 ]true[ 343, 2 ]true
C7 x ((C2 x C2 x C2) : C49)是否幂零:false[ 8, 5 ]true[ 343, 2 ]false
C2 x C14 x D98是否幂零:false[ 8, 5 ]false[ 343, 2 ]true
C98 x C14 x C2是否幂零:true[ 8, 5 ]true[ 343, 2 ]true
C7 x C7 x (C7 : C8)是否幂零:false[ 8, 1 ]false[ 343, 5 ]true
C7 x ((C7 x C7) : C8)是否幂零:false[ 8, 1 ]false[ 343, 5 ]true
C56 x C7 x C7是否幂零:true[ 8, 1 ]true[ 343, 5 ]true
C7 x ((C7 x C7) : C8)是否幂零:false[ 8, 1 ]false[ 343, 5 ]true
C7 x ((C7 : C4) x D14)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C7 x ((C7 x (C7 : C4)) : C2)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C7 x ((C14 x D14) : C2)是否幂零:false[ 8, 3 ]false[ 343, 5 ]true
C7 x ((C14 x D14) : C2)是否幂零:false[ 8, 3 ]false[ 343, 5 ]true
C7 x ((C7 x C7) : Q8)是否幂零:false[ 8, 4 ]false[ 343, 5 ]true
C7 x C7 x (C7 : Q8)是否幂零:false[ 8, 4 ]false[ 343, 5 ]true
C7 x C28 x D14是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C7 x C7 x D56是否幂零:false[ 8, 3 ]false[ 343, 5 ]true
C7 x C14 x (C7 : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C7 x C7 x ((C14 x C2) : C2)是否幂零:false[ 8, 3 ]false[ 343, 5 ]true
C7 x ((C7 x C7) : Q8)是否幂零:false[ 8, 4 ]false[ 343, 5 ]true
C28 x ((C7 x C7) : C2)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C7 x ((C28 x C7) : C2)是否幂零:false[ 8, 3 ]false[ 343, 5 ]true
C14 x ((C7 x C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C7 x ((C14 x C14) : C2)是否幂零:false[ 8, 3 ]false[ 343, 5 ]true
C28 x C14 x C7是否幂零:true[ 8, 2 ]true[ 343, 5 ]true
C7 x C7 x C7 x D8是否幂零:true[ 8, 3 ]true[ 343, 5 ]true
C7 x C7 x C7 x Q8是否幂零:true[ 8, 4 ]true[ 343, 5 ]true
C7 x ((C7 x C7) : C8)是否幂零:false[ 8, 1 ]false[ 343, 5 ]true
C7 x ((D14 x D14) : C2)是否幂零:false[ 8, 3 ]false[ 343, 5 ]true
C7 x ((C7 x C7) : Q8)是否幂零:false[ 8, 4 ]false[ 343, 5 ]true
C7 x C7 x ((C2 x C2 x C2) : C7)是否幂零:false[ 8, 5 ]true[ 343, 5 ]false
C14 x ((C7 x C7) : C4)是否幂零:false[ 8, 2 ]false[ 343, 5 ]true
C14 x D14 x D14是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C14 x C14 x D14是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C2 x C14 x ((C7 x C7) : C2)是否幂零:false[ 8, 5 ]false[ 343, 5 ]true
C14 x C14 x C14是否幂零:true[ 8, 5 ]true[ 343, 5 ]true

这篇关于153种2744阶群的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986490

相关文章

Python习题 153:合并两个 txt 文件内容

(编码题)编写一个函数,使用 Python 中的 with 语句和文件操作来实现将一个 txt 文件的内容追加到另一个 txt 文件中。 Python 代码如下:def append_file_content(source_file_path, target_file_path):# 使用 with 语句打开源文件,以只读方式读取内容with open(source_file_path, 'r'

LeetCode 题解(153): Surrounded Regions

题目: Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured by flipping all 'O's into 'X's in that surrounded region. For example, X X X XX O O XX

177种216阶群

陈松良的《关于216阶群的完全分类》一文证明G216共有177种互不同构的类型,并获得了G的全部构造。 gap> NumberSmallGroups(216); 177 gap> for n in [1..177] do G:=SmallGroup(216,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:

57种168阶群

在郭继东等人的《单群PSL(2,7)的一个新刻画》一文中给出单群PSL(2,7)的一个新刻画,主要结果是下述定理:如果有限群G的同阶的元素的个数组成的集合是{1,21,56,42,48},则G≌PSL(2,7)。gap> NumberSmallGroups(168);IdGroup(PSL(2,7));IdGroup(SL(3,2));57[ 168, 42 ][ 168, 42 ]gap> fo

45种108阶群

在陈松良等人的《关于108阶群的完全分类》一文中证明了G108共有45=10+7+28+0种互不同构的类型.若Sylow子群都正规,则G有10种;若Sylow 2-子群正规而Sylow 3-子群不正规,则G有7种;若Sylow 3-子群正规而Sylow 2-子群不正规,则G有28种;若Sylow子群都不正规,则G不存在。 20151029:4种类型所包含的GAP4编号: Sylow子群都正规(10

力扣HOT100 - 153. 寻找旋转排序数组中的最小值

解题思路: 与33题类似。 class Solution {public int findMin(int[] nums) {int l = 0;int r = nums.length - 1;if (nums[r] >= nums[l]) return nums[0];while (l <= r) {int mid = l + (r - l) / 2;if (nums[0] > num

【C】153 寻找旋转排序数组中的最小值

已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到: 若旋转 4 次,则可以得到 [4,5,6,7,0,1,2] 若旋转 7 次,则可以得到 [0,1,2,4,5,6,7] 注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1

6.10.水仙花数是指各位数字的立方和等于该数本身的三位数。例如153是水仙花数,请编程并计算出所有的水仙花数。

#include<stdio.h>int main(){int a,b,c,i;for(i=100;i<=999;i++){a=i/100;b=i/10%10;c=i%10;if(i==a*a*a+b*b*b+c*c*c)printf("%d\n",i);}} 心得:

模块三:二分——153.寻找旋转排序数组中的最小值

文章目录 题目描述算法原理解法一:暴力查找解法二:二分查找疑问 代码实现解法一:暴力查找解法二:C++Java 题目描述 题目链接:153.寻找旋转排序数组中的最小值 根据题目的要求时间复杂度为O(log N)可知需要使用二分查找。 算法原理 解法一:暴力查找 遍历数组一遍,寻找数组最小值并返回,时间复杂度为O(N),因为需要遍历数组一遍,与本题要求不符,但是可以AC

LeetCode-153. 寻找旋转排序数组中的最小值【数组 二分查找】

LeetCode-153. 寻找旋转排序数组中的最小值【数组 二分查找】 题目描述:解题思路一:二分查找,注意在闭区间[0, n-2]解题思路二:0解题思路三:0 题目描述: 已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到: 若旋转 4 次,则可以得到 [4,