177种216阶群

2024-05-13 18:32
文章标签 177 216 阶群

本文主要是介绍177种216阶群,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

陈松良的《关于216阶群的完全分类》一文证明G216共有177种互不同构的类型,并获得了G的全部构造。
gap> NumberSmallGroups(216);
177
gap> for n in [1..177] do G:=SmallGroup(216,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,6,8,12,18,27,36,54,72,108,216];;for i in M do Print(Size(Positions(L,i)),","); od;Print("\n");od;                 
[ 216, 1 ]:1,1,2,2,2,108,4,6,18,12,18,0,36,0,
[ 216, 2 ]:1,1,2,2,2,4,4,6,18,12,18,24,36,72,
[ 216, 3 ]:1,1,2,6,2,0,12,6,72,36,72,0,0,0,
[ 216, 4 ]:1,1,2,110,2,0,4,6,18,12,18,0,36,0,
[ 216, 5 ]:1,55,2,56,2,0,4,6,18,12,18,0,36,0,
[ 216, 6 ]:1,109,2,2,2,0,4,6,18,12,18,0,36,0,
[ 216, 7 ]:1,3,2,108,6,0,0,18,18,0,54,0,0,0,
[ 216, 8 ]:1,57,2,54,6,0,0,18,18,0,54,0,0,0,
[ 216, 9 ]:1,3,2,4,6,0,8,18,18,24,54,0,72,0,
[ 216, 10 ]:1,5,2,2,10,0,4,30,18,12,90,0,36,0,
[ 216, 11 ]:1,1,2,6,2,0,12,6,18,36,18,0,108,0,
[ 216, 12 ]:1,1,8,2,8,36,16,18,0,36,0,0,0,0,
[ 216, 13 ]:1,1,8,2,8,12,16,18,0,36,0,72,0,0,
[ 216, 14 ]:1,1,26,2,26,36,52,0,0,0,0,0,0,0,
[ 216, 15 ]:1,1,8,2,8,36,16,18,0,36,0,0,0,0,
[ 216, 16 ]:1,1,8,2,8,108,16,18,0,36,0,0,0,0,
[ 216, 17 ]:1,1,26,2,26,36,52,0,0,0,0,0,0,0,
[ 216, 18 ]:1,1,8,2,8,4,16,18,0,36,0,72,0,0,
[ 216, 19 ]:1,1,26,2,26,4,52,0,0,0,0,0,0,0,
[ 216, 20 ]:1,1,8,2,8,4,16,18,0,36,0,72,0,0,
[ 216, 21 ]:1,57,2,54,6,0,0,18,72,0,0,0,0,0,
[ 216, 22 ]:1,7,2,0,14,0,0,42,72,0,72,0,0,0,
[ 216, 23 ]:1,111,2,0,6,0,0,18,18,0,54,0,0,0,
[ 216, 24 ]:1,7,2,0,14,0,0,42,18,0,126,0,0,0,
[ 216, 25 ]:1,1,26,18,26,36,36,0,0,0,0,0,0,0,
[ 216, 26 ]:1,1,8,78,8,0,48,18,0,36,0,0,0,0,
[ 216, 27 ]:1,19,8,60,44,0,12,18,0,36,0,0,0,0,
[ 216, 28 ]:1,55,8,24,8,0,48,18,0,36,0,0,0,0,
[ 216, 29 ]:1,73,8,6,44,0,12,18,0,36,0,0,0,0,
[ 216, 30 ]:1,7,8,72,20,0,36,54,0,0,0,0,0,0,
[ 216, 31 ]:1,25,8,54,56,0,0,54,0,0,0,0,0,0,
[ 216, 32 ]:1,61,8,18,20,0,36,54,0,0,0,0,0,0,
[ 216, 33 ]:1,1,26,54,26,0,108,0,0,0,0,0,0,0,
[ 216, 34 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,0,
[ 216, 35 ]:1,37,26,18,98,0,36,0,0,0,0,0,0,0,
[ 216, 36 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,0,
[ 216, 37 ]:1,37,26,18,98,0,36,0,0,0,0,0,0,0,
[ 216, 38 ]:1,1,26,6,26,0,12,54,0,36,0,0,0,0,
[ 216, 39 ]:1,1,26,6,26,0,12,54,0,36,0,0,0,0,
[ 216, 40 ]:1,1,8,6,8,0,48,72,0,0,0,0,0,0,
[ 216, 41 ]:1,1,8,6,8,0,48,72,0,0,0,0,0,0,
[ 216, 42 ]:1,1,80,6,80,0,48,0,0,0,0,0,0,0,
[ 216, 43 ]:1,1,8,38,8,0,88,18,0,36,0,0,0,0,
[ 216, 44 ]:1,1,8,14,8,0,40,18,0,108,0,0,0,0,
[ 216, 45 ]:1,19,8,20,44,0,52,18,0,36,0,0,0,0,
[ 216, 46 ]:1,37,8,2,80,0,16,18,0,36,0,0,0,0,
[ 216, 47 ]:1,7,8,8,20,0,28,54,0,72,0,0,0,0,
[ 216, 48 ]:1,13,8,2,32,0,16,90,0,36,0,0,0,0,
[ 216, 49 ]:1,1,26,38,26,0,124,0,0,0,0,0,0,0,
[ 216, 50 ]:1,19,26,20,62,0,88,0,0,0,0,0,0,0,
[ 216, 51 ]:1,37,26,2,98,0,52,0,0,0,0,0,0,0,
[ 216, 52 ]:1,1,8,38,8,0,88,18,0,36,0,0,0,0,
[ 216, 53 ]:1,19,8,20,44,0,52,18,0,36,0,0,0,0,
[ 216, 54 ]:1,37,8,2,80,0,16,18,0,36,0,0,0,0,
[ 216, 55 ]:1,3,8,36,24,0,72,54,0,0,0,0,0,0,
[ 216, 56 ]:1,3,8,12,24,0,24,54,0,72,0,0,0,0,
[ 216, 57 ]:1,21,8,18,60,0,36,54,0,0,0,0,0,0,
[ 216, 58 ]:1,9,8,6,36,0,12,90,0,36,0,0,0,0,
[ 216, 59 ]:1,3,26,36,78,0,72,0,0,0,0,0,0,0,
[ 216, 60 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,0,
[ 216, 61 ]:1,3,8,36,24,0,72,54,0,0,0,0,0,0,
[ 216, 62 ]:1,21,8,18,60,0,36,54,0,0,0,0,0,0,
[ 216, 63 ]:1,1,8,110,8,0,16,18,0,36,0,0,0,0,
[ 216, 64 ]:1,55,8,56,8,0,16,18,0,36,0,0,0,0,
[ 216, 65 ]:1,109,8,2,8,0,16,18,0,36,0,0,0,0,
[ 216, 66 ]:1,1,26,38,26,0,124,0,0,0,0,0,0,0,
[ 216, 67 ]:1,19,26,20,62,0,88,0,0,0,0,0,0,0,
[ 216, 68 ]:1,37,26,2,98,0,52,0,0,0,0,0,0,0,
[ 216, 69 ]:1,3,8,108,24,0,0,54,0,0,0,0,0,0,
[ 216, 70 ]:1,57,8,54,24,0,0,54,0,0,0,0,0,0,
[ 216, 71 ]:1,3,26,36,78,0,72,0,0,0,0,0,0,0,
[ 216, 72 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,0,
[ 216, 73 ]:1,3,8,4,24,0,32,54,0,72,0,0,0,0,
[ 216, 74 ]:1,3,26,4,78,0,104,0,0,0,0,0,0,0,
[ 216, 75 ]:1,3,8,4,24,0,32,54,0,72,0,0,0,0,
[ 216, 76 ]:1,5,8,2,40,0,16,90,0,36,0,0,0,0,
[ 216, 77 ]:1,5,26,2,130,0,52,0,0,0,0,0,0,0,
[ 216, 78 ]:1,5,8,2,40,0,16,90,0,36,0,0,0,0,
[ 216, 79 ]:1,1,8,6,8,0,48,18,0,108,0,0,0,0,
[ 216, 80 ]:1,1,26,6,26,0,156,0,0,0,0,0,0,0,
[ 216, 81 ]:1,1,8,6,8,0,48,18,0,108,0,0,0,0,
[ 216, 82 ]:1,1,26,2,26,12,52,0,0,0,0,0,0,0,
[ 216, 83 ]:1,1,26,2,26,36,52,0,0,0,0,0,0,0,
[ 216, 84 ]:1,1,26,2,26,108,52,0,0,0,0,0,0,0,
[ 216, 85 ]:1,1,26,2,26,4,52,0,0,0,0,0,0,0,
[ 216, 86 ]:1,9,26,18,18,108,36,0,0,0,0,0,0,0,
[ 216, 87 ]:1,45,26,18,90,0,36,0,0,0,0,0,0,0,
[ 216, 88 ]:1,9,26,54,18,0,108,0,0,0,0,0,0,0,
[ 216, 89 ]:1,9,26,6,18,0,12,54,0,36,0,0,0,0,
[ 216, 90 ]:1,21,8,18,60,0,36,0,0,0,0,0,0,0,
[ 216, 91 ]:1,21,8,18,60,0,36,0,0,0,0,0,0,0,
[ 216, 92 ]:1,21,80,18,60,0,36,0,0,0,0,0,0,0,
[ 216, 93 ]:1,57,26,54,6,0,0,18,0,0,0,0,0,0,
[ 216, 94 ]:1,57,8,54,24,0,0,0,0,0,0,0,0,0,
[ 216, 95 ]:1,21,80,18,60,0,36,0,0,0,0,0,0,0,
[ 216, 96 ]:1,39,26,0,78,0,0,18,0,0,0,0,0,0,
[ 216, 97 ]:1,39,26,0,78,0,0,18,0,0,0,0,0,0,
[ 216, 98 ]:1,15,8,0,48,0,0,72,0,0,0,0,0,0,
[ 216, 99 ]:1,39,80,0,96,0,0,0,0,0,0,0,0,0,
[ 216, 100 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,0,
[ 216, 101 ]:1,79,8,0,56,0,0,54,0,0,0,0,0,0,
[ 216, 102 ]:1,55,26,0,134,0,0,0,0,0,0,0,0,0,
[ 216, 103 ]:1,7,26,0,38,0,0,90,0,0,0,0,0,0,
[ 216, 104 ]:1,7,26,0,38,0,0,90,0,0,0,0,0,0,
[ 216, 105 ]:1,7,8,0,56,0,0,72,0,0,0,0,0,0,
[ 216, 106 ]:1,7,8,0,56,0,0,72,0,0,0,0,0,0,
[ 216, 107 ]:1,7,80,0,128,0,0,0,0,0,0,0,0,0,
[ 216, 108 ]:1,39,8,0,96,0,0,54,0,0,0,0,0,0,
[ 216, 109 ]:1,15,8,0,48,0,0,126,0,0,0,0,0,0,
[ 216, 110 ]:1,39,26,0,150,0,0,0,0,0,0,0,0,0,
[ 216, 111 ]:1,39,8,0,96,0,0,54,0,0,0,0,0,0,
[ 216, 112 ]:1,111,8,0,24,0,0,54,0,0,0,0,0,0,
[ 216, 113 ]:1,39,26,0,150,0,0,0,0,0,0,0,0,0,
[ 216, 114 ]:1,7,8,0,56,0,0,126,0,0,0,0,0,0,
[ 216, 115 ]:1,7,26,0,182,0,0,0,0,0,0,0,0,0,
[ 216, 116 ]:1,7,8,0,56,0,0,126,0,0,0,0,0,0,
[ 216, 117 ]:1,1,26,18,26,36,36,0,0,0,0,0,0,0,
[ 216, 118 ]:1,1,26,18,26,108,36,0,0,0,0,0,0,0,
[ 216, 119 ]:1,7,26,24,74,0,84,0,0,0,0,0,0,0,
[ 216, 120 ]:1,19,26,12,62,0,96,0,0,0,0,0,0,0,
[ 216, 121 ]:1,13,26,18,122,0,36,0,0,0,0,0,0,0,
[ 216, 122 ]:1,25,26,6,110,0,48,0,0,0,0,0,0,0,
[ 216, 123 ]:1,1,26,30,26,0,132,0,0,0,0,0,0,0,
[ 216, 124 ]:1,7,26,72,74,0,36,0,0,0,0,0,0,0,
[ 216, 125 ]:1,19,26,60,62,0,48,0,0,0,0,0,0,0,
[ 216, 126 ]:1,55,26,24,26,0,84,0,0,0,0,0,0,0,
[ 216, 127 ]:1,25,26,54,110,0,0,0,0,0,0,0,0,0,
[ 216, 128 ]:1,61,26,18,74,0,36,0,0,0,0,0,0,0,
[ 216, 129 ]:1,73,26,6,62,0,48,0,0,0,0,0,0,0,
[ 216, 130 ]:1,1,26,78,26,0,84,0,0,0,0,0,0,0,
[ 216, 131 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,0,
[ 216, 132 ]:1,37,26,18,98,0,36,0,0,0,0,0,0,0,
[ 216, 133 ]:1,1,26,54,26,0,108,0,0,0,0,0,0,0,
[ 216, 134 ]:1,1,80,6,80,0,48,0,0,0,0,0,0,0,
[ 216, 135 ]:1,1,26,14,26,0,148,0,0,0,0,0,0,0,
[ 216, 136 ]:1,7,26,8,74,0,100,0,0,0,0,0,0,0,
[ 216, 137 ]:1,13,26,2,122,0,52,0,0,0,0,0,0,0,
[ 216, 138 ]:1,3,26,12,78,0,96,0,0,0,0,0,0,0,
[ 216, 139 ]:1,9,26,6,126,0,48,0,0,0,0,0,0,0,
[ 216, 140 ]:1,1,26,38,26,0,124,0,0,0,0,0,0,0,
[ 216, 141 ]:1,19,26,20,62,0,88,0,0,0,0,0,0,0,
[ 216, 142 ]:1,37,26,2,98,0,52,0,0,0,0,0,0,0,
[ 216, 143 ]:1,3,26,36,78,0,72,0,0,0,0,0,0,0,
[ 216, 144 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,0,
[ 216, 145 ]:1,1,26,110,26,0,52,0,0,0,0,0,0,0,
[ 216, 146 ]:1,55,26,56,26,0,52,0,0,0,0,0,0,0,
[ 216, 147 ]:1,109,26,2,26,0,52,0,0,0,0,0,0,0,
[ 216, 148 ]:1,3,26,108,78,0,0,0,0,0,0,0,0,0,
[ 216, 149 ]:1,57,26,54,78,0,0,0,0,0,0,0,0,0,
[ 216, 150 ]:1,3,26,4,78,0,104,0,0,0,0,0,0,0,
[ 216, 151 ]:1,5,26,2,130,0,52,0,0,0,0,0,0,0,
[ 216, 152 ]:1,1,26,6,26,0,156,0,0,0,0,0,0,0,
[ 216, 153 ]:1,9,80,54,72,0,0,0,0,0,0,0,0,0,
[ 216, 154 ]:1,9,26,18,18,36,36,0,0,0,0,0,0,0,
[ 216, 155 ]:1,9,26,18,18,108,36,0,0,0,0,0,0,0,
[ 216, 156 ]:1,39,26,72,42,0,36,0,0,0,0,0,0,0,
[ 216, 157 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,0,
[ 216, 158 ]:1,33,26,54,102,0,0,0,0,0,0,0,0,0,
[ 216, 159 ]:1,45,26,18,90,0,36,0,0,0,0,0,0,0,
[ 216, 160 ]:1,9,26,54,18,0,108,0,0,0,0,0,0,0,
[ 216, 161 ]:1,9,26,126,18,0,36,0,0,0,0,0,0,0,
[ 216, 162 ]:1,63,26,0,126,0,0,0,0,0,0,0,0,0,
[ 216, 163 ]:1,9,80,6,72,0,48,0,0,0,0,0,0,0,
[ 216, 164 ]:1,21,80,18,60,0,36,0,0,0,0,0,0,0,
[ 216, 165 ]:1,57,80,54,24,0,0,0,0,0,0,0,0,0,
[ 216, 166 ]:1,15,80,0,120,0,0,0,0,0,0,0,0,0,
[ 216, 167 ]:1,39,80,0,96,0,0,0,0,0,0,0,0,0,
[ 216, 168 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,0,
[ 216, 169 ]:1,19,26,108,62,0,0,0,0,0,0,0,0,0,
[ 216, 170 ]:1,31,26,0,158,0,0,0,0,0,0,0,0,0,
[ 216, 171 ]:1,79,26,0,110,0,0,0,0,0,0,0,0,0,
[ 216, 172 ]:1,55,26,0,134,0,0,0,0,0,0,0,0,0,
[ 216, 173 ]:1,7,80,0,128,0,0,0,0,0,0,0,0,0,
[ 216, 174 ]:1,15,26,0,174,0,0,0,0,0,0,0,0,0,
[ 216, 175 ]:1,39,26,0,150,0,0,0,0,0,0,0,0,0,
[ 216, 176 ]:1,111,26,0,78,0,0,0,0,0,0,0,0,0,
[ 216, 177 ]:1,7,26,0,182,0,0,0,0,0,0,0,0,0,
gap> for n in [1..177] do G:=SmallGroup(216,n);idn:=IdGroup(G);Print(idn);Print(":");L:=List(Elements(G),Order);;M:=[1,2,3,4,6,8,12,18,27,36,54,72,108,216];;for i in M do Print(Size(Positions(L,i)),","); od;arr:=[];;idn:=IdGroup(G);cl:=ConjugacyClasses(G);;Append(arr,"共轭类数:");;Append(arr,String(Size(cl)));Append(arr,"中心:");;Append(arr,String(IdGroup(Center(G))));;Append(arr,"换位子群:");;Append(arr,String(IdGroup(DerivedSubgroup(G))));;Append(arr,"自同构群:");;Append(arr,String(Order(AutomorphismGroup(G))));;cl:=NormalSubgroups(G);;Append(arr,"正规子群个数:");;len:=Size(cl);;Append(arr,String(len));;Print(arr);Print("\n");od;
[ 216, 1 ]:1,1,2,2,2,108,4,6,18,12,18,0,36,
0,共轭类数:60中心:[ 4, 1 ]换位子群:[ 27, 1 ]自同构群:1944正规子群个数:13
[ 216, 2 ]:1,1,2,2,2,4,4,6,18,12,18,24,36,
72,共轭类数:216中心:[ 216, 2 ]换位子群:[ 1, 1 ]自同构群:72正规子群个数:16
[ 216, 3 ]:1,1,2,6,2,0,12,6,72,36,72,0,0,
0,共轭类数:63中心:[ 18, 2 ]换位子群:[ 8, 4 ]自同构群:216正规子群个数:10
[ 216, 4 ]:1,1,2,110,2,0,4,6,18,12,18,0,36,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 2 ]自同构群:3888正规子群个数:15
[ 216, 5 ]:1,55,2,56,2,0,4,6,18,12,18,0,36,
0,共轭类数:60中心:[ 4, 1 ]换位子群:[ 27, 1 ]自同构群:1944正规子群个数:17
[ 216, 6 ]:1,109,2,2,2,0,4,6,18,12,18,0,36,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 2 ]自同构群:3888正规子群个数:15
[ 216, 7 ]:1,3,2,108,6,0,0,18,18,0,54,0,0,
0,共轭类数:60中心:[ 4, 2 ]换位子群:[ 27, 1 ]自同构群:3888正规子群个数:23
[ 216, 8 ]:1,57,2,54,6,0,0,18,18,0,54,0,0,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 2 ]自同构群:1944正规子群个数:15
[ 216, 9 ]:1,3,2,4,6,0,8,18,18,24,54,0,72,
0,共轭类数:216中心:[ 216, 9 ]换位子群:[ 1, 1 ]自同构群:144正规子群个数:32
[ 216, 10 ]:1,5,2,2,10,0,4,30,18,12,90,0,36,
0,共轭类数:135中心:[ 54, 2 ]换位子群:[ 2, 1 ]自同构群:144正规子群个数:24
[ 216, 11 ]:1,1,2,6,2,0,12,6,18,36,18,0,108,
0,共轭类数:135中心:[ 54, 2 ]换位子群:[ 2, 1 ]自同构群:432正规子群个数:24
[ 216, 12 ]:1,1,8,2,8,36,16,18,0,36,0,0,0,
0,共轭类数:72中心:[ 12, 2 ]换位子群:[ 9, 1 ]自同构群:432正规子群个数:20
[ 216, 13 ]:1,1,8,2,8,12,16,18,0,36,0,72,0,
0,共轭类数:108中心:[ 36, 2 ]换位子群:[ 3, 1 ]自同构群:144正规子群个数:21
[ 216, 14 ]:1,1,26,2,26,36,52,0,0,0,0,0,0,
0,共轭类数:40中心:[ 4, 1 ]换位子群:[ 9, 2 ]自同构群:432正规子群个数:17
[ 216, 15 ]:1,1,8,2,8,36,16,18,0,36,0,0,0,
0,共轭类数:40中心:[ 4, 1 ]换位子群:[ 9, 1 ]自同构群:216正规子群个数:17
[ 216, 16 ]:1,1,8,2,8,108,16,18,0,36,0,0,0,
0,共轭类数:60中心:[ 4, 1 ]换位子群:[ 27, 2 ]自同构群:11664正规子群个数:31
[ 216, 17 ]:1,1,26,2,26,36,52,0,0,0,0,0,0,
0,共轭类数:40中心:[ 12, 2 ]换位子群:[ 27, 3 ]自同构群:1728正规子群个数:22
[ 216, 18 ]:1,1,8,2,8,4,16,18,0,36,0,72,0,
0,共轭类数:216中心:[ 216, 18 ]换位子群:[ 1, 1 ]自同构群:432正规子群个数:40
[ 216, 19 ]:1,1,26,2,26,4,52,0,0,0,0,0,0,
0,共轭类数:88中心:[ 24, 2 ]换位子群:[ 3, 1 ]自同构群:1728正规子群个数:28
[ 216, 20 ]:1,1,8,2,8,4,16,18,0,36,0,72,0,
0,共轭类数:88中心:[ 24, 2 ]换位子群:[ 3, 1 ]自同构群:216正规子群个数:28
[ 216, 21 ]:1,57,2,54,6,0,0,18,72,0,0,0,0,
0,共轭类数:21中心:[ 1, 1 ]换位子群:[ 108, 3 ]自同构群:1944正规子群个数:8
[ 216, 22 ]:1,7,2,0,14,0,0,42,72,0,72,0,0,
0,共轭类数:72中心:[ 18, 2 ]换位子群:[ 4, 2 ]自同构群:216正规子群个数:14
[ 216, 23 ]:1,111,2,0,6,0,0,18,18,0,54,0,0,
0,共轭类数:60中心:[ 4, 2 ]换位子群:[ 27, 1 ]自同构群:11664正规子群个数:31
[ 216, 24 ]:1,7,2,0,14,0,0,42,18,0,126,0,0,
0,共轭类数:216中心:[ 216, 24 ]换位子群:[ 1, 1 ]自同构群:3024正规子群个数:64
[ 216, 25 ]:1,1,26,18,26,36,36,0,0,0,0,0,0,
0,共轭类数:28中心:[ 6, 2 ]换位子群:[ 27, 3 ]自同构群:288正规子群个数:8
[ 216, 26 ]:1,1,8,78,8,0,48,18,0,36,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 9 ]自同构群:1296正规子群个数:19
[ 216, 27 ]:1,19,8,60,44,0,12,18,0,36,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 2 ]自同构群:1296正规子群个数:23
[ 216, 28 ]:1,55,8,24,8,0,48,18,0,36,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 2 ]自同构群:1296正规子群个数:21
[ 216, 29 ]:1,73,8,6,44,0,12,18,0,36,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 9 ]自同构群:1296正规子群个数:19
[ 216, 30 ]:1,7,8,72,20,0,36,54,0,0,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 2 ]自同构群:1296正规子群个数:25
[ 216, 31 ]:1,25,8,54,56,0,0,54,0,0,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 9 ]自同构群:1296正规子群个数:19
[ 216, 32 ]:1,61,8,18,20,0,36,54,0,0,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 9 ]自同构群:1296正规子群个数:19
[ 216, 33 ]:1,1,26,54,26,0,108,0,0,0,0,0,0,
0,共轭类数:19中心:[ 2, 1 ]换位子群:[ 54, 10 ]自同构群:864正规子群个数:16
[ 216, 34 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,
0,共轭类数:22中心:[ 2, 1 ]换位子群:[ 27, 3 ]自同构群:432正规子群个数:20
[ 216, 35 ]:1,37,26,18,98,0,36,0,0,0,0,0,0,
0,共轭类数:19中心:[ 2, 1 ]换位子群:[ 54, 10 ]自同构群:864正规子群个数:16
[ 216, 36 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,
0,共轭类数:22中心:[ 2, 1 ]换位子群:[ 27, 3 ]自同构群:864正规子群个数:18
[ 216, 37 ]:1,37,26,18,98,0,36,0,0,0,0,0,0,
0,共轭类数:19中心:[ 2, 1 ]换位子群:[ 54, 10 ]自同构群:432正规子群个数:16
[ 216, 38 ]:1,1,26,6,26,0,12,54,0,36,0,0,0,
0,共轭类数:63中心:[ 18, 2 ]换位子群:[ 8, 4 ]自同构群:432正规子群个数:16
[ 216, 39 ]:1,1,26,6,26,0,12,54,0,36,0,0,0,
0,共轭类数:31中心:[ 6, 2 ]换位子群:[ 24, 11 ]自同构群:216正规子群个数:13
[ 216, 40 ]:1,1,8,6,8,0,48,72,0,0,0,0,0,
0,共轭类数:63中心:[ 18, 5 ]换位子群:[ 8, 4 ]自同构群:1296正规子群个数:22
[ 216, 41 ]:1,1,8,6,8,0,48,72,0,0,0,0,0,
0,共轭类数:31中心:[ 6, 2 ]换位子群:[ 24, 11 ]自同构群:648正规子群个数:13
[ 216, 42 ]:1,1,80,6,80,0,48,0,0,0,0,0,0,
0,共轭类数:31中心:[ 6, 2 ]换位子群:[ 24, 11 ]自同构群:1296正规子群个数:13
[ 216, 43 ]:1,1,8,38,8,0,88,18,0,36,0,0,0,
0,共轭类数:63中心:[ 6, 2 ]换位子群:[ 18, 2 ]自同构群:864正规子群个数:24
[ 216, 44 ]:1,1,8,14,8,0,40,18,0,108,0,0,0,
0,共轭类数:81中心:[ 18, 2 ]换位子群:[ 6, 2 ]自同构群:288正规子群个数:27
[ 216, 45 ]:1,19,8,20,44,0,52,18,0,36,0,0,0,
0,共轭类数:72中心:[ 12, 2 ]换位子群:[ 9, 1 ]自同构群:432正规子群个数:28
[ 216, 46 ]:1,37,8,2,80,0,16,18,0,36,0,0,0,
0,共轭类数:63中心:[ 6, 2 ]换位子群:[ 18, 2 ]自同构群:864正规子群个数:24
[ 216, 47 ]:1,7,8,8,20,0,28,54,0,72,0,0,0,
0,共轭类数:108中心:[ 36, 2 ]换位子群:[ 3, 1 ]自同构群:144正规子群个数:33
[ 216, 48 ]:1,13,8,2,32,0,16,90,0,36,0,0,0,
0,共轭类数:81中心:[ 18, 2 ]换位子群:[ 6, 2 ]自同构群:288正规子群个数:27
[ 216, 49 ]:1,1,26,38,26,0,124,0,0,0,0,0,0,
0,共轭类数:31中心:[ 2, 1 ]换位子群:[ 18, 5 ]自同构群:864正规子群个数:21
[ 216, 50 ]:1,19,26,20,62,0,88,0,0,0,0,0,0,
0,共轭类数:40中心:[ 4, 1 ]换位子群:[ 9, 2 ]自同构群:432正规子群个数:25
[ 216, 51 ]:1,37,26,2,98,0,52,0,0,0,0,0,0,
0,共轭类数:31中心:[ 2, 1 ]换位子群:[ 18, 5 ]自同构群:864正规子群个数:21
[ 216, 52 ]:1,1,8,38,8,0,88,18,0,36,0,0,0,
0,共轭类数:31中心:[ 2, 1 ]换位子群:[ 18, 2 ]自同构群:432正规子群个数:21
[ 216, 53 ]:1,19,8,20,44,0,52,18,0,36,0,0,0,
0,共轭类数:40中心:[ 4, 1 ]换位子群:[ 9, 1 ]自同构群:216正规子群个数:25
[ 216, 54 ]:1,37,8,2,80,0,16,18,0,36,0,0,0,
0,共轭类数:31中心:[ 2, 1 ]换位子群:[ 18, 2 ]自同构群:432正规子群个数:21
[ 216, 55 ]:1,3,8,36,24,0,72,54,0,0,0,0,0,
0,共轭类数:72中心:[ 12, 5 ]换位子群:[ 9, 1 ]自同构群:864正规子群个数:36
[ 216, 56 ]:1,3,8,12,24,0,24,54,0,72,0,0,0,
0,共轭类数:108中心:[ 36, 5 ]换位子群:[ 3, 1 ]自同构群:288正规子群个数:39
[ 216, 57 ]:1,21,8,18,60,0,36,54,0,0,0,0,0,
0,共轭类数:63中心:[ 6, 2 ]换位子群:[ 18, 2 ]自同构群:432正规子群个数:24
[ 216, 58 ]:1,9,8,6,36,0,12,90,0,36,0,0,0,
0,共轭类数:81中心:[ 18, 2 ]换位子群:[ 6, 2 ]自同构群:144正规子群个数:27
[ 216, 59 ]:1,3,26,36,78,0,72,0,0,0,0,0,0,
0,共轭类数:40中心:[ 4, 2 ]换位子群:[ 9, 2 ]自同构群:864正规子群个数:31
[ 216, 60 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,
0,共轭类数:31中心:[ 2, 1 ]换位子群:[ 18, 5 ]自同构群:432正规子群个数:21
[ 216, 61 ]:1,3,8,36,24,0,72,54,0,0,0,0,0,
0,共轭类数:40中心:[ 4, 2 ]换位子群:[ 9, 1 ]自同构群:432正规子群个数:31
[ 216, 62 ]:1,21,8,18,60,0,36,54,0,0,0,0,0,
0,共轭类数:31中心:[ 2, 1 ]换位子群:[ 18, 2 ]自同构群:216正规子群个数:21
[ 216, 63 ]:1,1,8,110,8,0,16,18,0,36,0,0,0,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 9 ]自同构群:23328正规子群个数:33
[ 216, 64 ]:1,55,8,56,8,0,16,18,0,36,0,0,0,
0,共轭类数:60中心:[ 4, 1 ]换位子群:[ 27, 2 ]自同构群:11664正规子群个数:35
[ 216, 65 ]:1,109,8,2,8,0,16,18,0,36,0,0,0,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 9 ]自同构群:23328正规子群个数:33
[ 216, 66 ]:1,1,26,38,26,0,124,0,0,0,0,0,0,
0,共轭类数:31中心:[ 6, 2 ]换位子群:[ 54, 10 ]自同构群:3456正规子群个数:24
[ 216, 67 ]:1,19,26,20,62,0,88,0,0,0,0,0,0,
0,共轭类数:40中心:[ 12, 2 ]换位子群:[ 27, 3 ]自同构群:1728正规子群个数:26
[ 216, 68 ]:1,37,26,2,98,0,52,0,0,0,0,0,0,
0,共轭类数:31中心:[ 6, 2 ]换位子群:[ 54, 10 ]自同构群:3456正规子群个数:24
[ 216, 69 ]:1,3,8,108,24,0,0,54,0,0,0,0,0,
0,共轭类数:60中心:[ 4, 2 ]换位子群:[ 27, 2 ]自同构群:23328正规子群个数:53
[ 216, 70 ]:1,57,8,54,24,0,0,54,0,0,0,0,0,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 9 ]自同构群:11664正规子群个数:33
[ 216, 71 ]:1,3,26,36,78,0,72,0,0,0,0,0,0,
0,共轭类数:40中心:[ 12, 5 ]换位子群:[ 27, 3 ]自同构群:3456正规子群个数:38
[ 216, 72 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,
0,共轭类数:31中心:[ 6, 2 ]换位子群:[ 54, 10 ]自同构群:1728正规子群个数:24
[ 216, 73 ]:1,3,8,4,24,0,32,54,0,72,0,0,0,
0,共轭类数:216中心:[ 216, 73 ]换位子群:[ 1, 1 ]自同构群:864正规子群个数:80
[ 216, 74 ]:1,3,26,4,78,0,104,0,0,0,0,0,0,
0,共轭类数:88中心:[ 24, 9 ]换位子群:[ 3, 1 ]自同构群:3456正规子群个数:56
[ 216, 75 ]:1,3,8,4,24,0,32,54,0,72,0,0,0,
0,共轭类数:88中心:[ 24, 9 ]换位子群:[ 3, 1 ]自同构群:432正规子群个数:56
[ 216, 76 ]:1,5,8,2,40,0,16,90,0,36,0,0,0,
0,共轭类数:135中心:[ 54, 9 ]换位子群:[ 2, 1 ]自同构群:864正规子群个数:60
[ 216, 77 ]:1,5,26,2,130,0,52,0,0,0,0,0,0,
0,共轭类数:55中心:[ 6, 2 ]换位子群:[ 6, 2 ]自同构群:3456正规子群个数:42
[ 216, 78 ]:1,5,8,2,40,0,16,90,0,36,0,0,0,
0,共轭类数:55中心:[ 6, 2 ]换位子群:[ 6, 2 ]自同构群:432正规子群个数:42
[ 216, 79 ]:1,1,8,6,8,0,48,18,0,108,0,0,0,
0,共轭类数:135中心:[ 54, 9 ]换位子群:[ 2, 1 ]自同构群:2592正规子群个数:60
[ 216, 80 ]:1,1,26,6,26,0,156,0,0,0,0,0,0,
0,共轭类数:55中心:[ 6, 2 ]换位子群:[ 6, 2 ]自同构群:10368正规子群个数:42
[ 216, 81 ]:1,1,8,6,8,0,48,18,0,108,0,0,0,
0,共轭类数:55中心:[ 6, 2 ]换位子群:[ 6, 2 ]自同构群:1296正规子群个数:42
[ 216, 82 ]:1,1,26,2,26,12,52,0,0,0,0,0,0,
0,共轭类数:108中心:[ 36, 8 ]换位子群:[ 3, 1 ]自同构群:1152正规子群个数:42
[ 216, 83 ]:1,1,26,2,26,36,52,0,0,0,0,0,0,
0,共轭类数:72中心:[ 12, 2 ]换位子群:[ 9, 2 ]自同构群:3456正规子群个数:38
[ 216, 84 ]:1,1,26,2,26,108,52,0,0,0,0,0,0,
0,共轭类数:60中心:[ 4, 1 ]换位子群:[ 27, 5 ]自同构群:1213056正规子群个数:85
[ 216, 85 ]:1,1,26,2,26,4,52,0,0,0,0,0,0,
0,共轭类数:216中心:[ 216, 85 ]换位子群:[ 1, 1 ]自同构群:44928正规子群个数:112
[ 216, 86 ]:1,9,26,18,18,108,36,0,0,0,0,0,0,
0,共轭类数:13中心:[ 1, 1 ]换位子群:[ 27, 3 ]自同构群:432正规子群个数:6
[ 216, 87 ]:1,45,26,18,90,0,36,0,0,0,0,0,0,
0,共轭类数:13中心:[ 1, 1 ]换位子群:[ 54, 8 ]自同构群:432正规子群个数:8
[ 216, 88 ]:1,9,26,54,18,0,108,0,0,0,0,0,0,
0,共轭类数:16中心:[ 3, 1 ]换位子群:[ 54, 8 ]自同构群:432正规子群个数:8
[ 216, 89 ]:1,9,26,6,18,0,12,54,0,36,0,0,0,
0,共轭类数:45中心:[ 9, 1 ]换位子群:[ 12, 3 ]自同构群:144正规子群个数:12
[ 216, 90 ]:1,21,8,18,60,0,36,0,0,0,0,0,0,
0,共轭类数:19中心:[ 1, 1 ]换位子群:[ 36, 3 ]自同构群:216正规子群个数:10
[ 216, 91 ]:1,21,8,18,60,0,36,0,0,0,0,0,0,
0,共轭类数:27中心:[ 3, 1 ]换位子群:[ 36, 3 ]自同构群:432正规子群个数:12
[ 216, 92 ]:1,21,80,18,60,0,36,0,0,0,0,0,0,
0,共轭类数:19中心:[ 1, 1 ]换位子群:[ 36, 11 ]自同构群:432正规子群个数:10
[ 216, 93 ]:1,57,26,54,6,0,0,18,0,0,0,0,0,
0,共轭类数:21中心:[ 1, 1 ]换位子群:[ 108, 18 ]自同构群:3888正规子群个数:14
[ 216, 94 ]:1,57,8,54,24,0,0,0,0,0,0,0,0,
0,共轭类数:21中心:[ 1, 1 ]换位子群:[ 108, 20 ]自同构群:11664正规子群个数:17
[ 216, 95 ]:1,21,80,18,60,0,36,0,0,0,0,0,0,
0,共轭类数:19中心:[ 3, 1 ]换位子群:[ 108, 22 ]自同构群:432正规子群个数:11
[ 216, 96 ]:1,39,26,0,78,0,0,18,0,0,0,0,0,
0,共轭类数:16中心:[ 1, 1 ]换位子群:[ 36, 5 ]自同构群:648正规子群个数:11
[ 216, 97 ]:1,39,26,0,78,0,0,18,0,0,0,0,0,
0,共轭类数:24中心:[ 1, 1 ]换位子群:[ 36, 5 ]自同构群:1296正规子群个数:12
[ 216, 98 ]:1,15,8,0,48,0,0,72,0,0,0,0,0,
0,共轭类数:36中心:[ 3, 1 ]换位子群:[ 12, 5 ]自同构群:432正规子群个数:15
[ 216, 99 ]:1,39,80,0,96,0,0,0,0,0,0,0,0,
0,共轭类数:16中心:[ 1, 1 ]换位子群:[ 36, 14 ]自同构群:1296正规子群个数:11
[ 216, 100 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,
0,共轭类数:28中心:[ 6, 2 ]换位子群:[ 27, 3 ]自同构群:288正规子群个数:12
[ 216, 101 ]:1,79,8,0,56,0,0,54,0,0,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 2 ]自同构群:1296正规子群个数:35
[ 216, 102 ]:1,55,26,0,134,0,0,0,0,0,0,0,0,
0,共轭类数:22中心:[ 2, 1 ]换位子群:[ 27, 3 ]自同构群:864正规子群个数:30
[ 216, 103 ]:1,7,26,0,38,0,0,90,0,0,0,0,0,
0,共轭类数:72中心:[ 18, 2 ]换位子群:[ 4, 2 ]自同构群:432正规子群个数:26
[ 216, 104 ]:1,7,26,0,38,0,0,90,0,0,0,0,0,
0,共轭类数:40中心:[ 6, 2 ]换位子群:[ 12, 5 ]自同构群:216正规子群个数:20
[ 216, 105 ]:1,7,8,0,56,0,0,72,0,0,0,0,0,
0,共轭类数:72中心:[ 18, 5 ]换位子群:[ 4, 2 ]自同构群:1296正规子群个数:32
[ 216, 106 ]:1,7,8,0,56,0,0,72,0,0,0,0,0,
0,共轭类数:40中心:[ 6, 2 ]换位子群:[ 12, 5 ]自同构群:648正规子群个数:20
[ 216, 107 ]:1,7,80,0,128,0,0,0,0,0,0,0,0,
0,共轭类数:40中心:[ 6, 2 ]换位子群:[ 12, 5 ]自同构群:1296正规子群个数:20
[ 216, 108 ]:1,39,8,0,96,0,0,54,0,0,0,0,0,
0,共轭类数:72中心:[ 12, 5 ]换位子群:[ 9, 1 ]自同构群:2592正规子群个数:52
[ 216, 109 ]:1,15,8,0,48,0,0,126,0,0,0,0,0,
0,共轭类数:108中心:[ 36, 5 ]换位子群:[ 3, 1 ]自同构群:864正规子群个数:63
[ 216, 110 ]:1,39,26,0,150,0,0,0,0,0,0,0,0,
0,共轭类数:40中心:[ 4, 2 ]换位子群:[ 9, 2 ]自同构群:2592正规子群个数:47
[ 216, 111 ]:1,39,8,0,96,0,0,54,0,0,0,0,0,
0,共轭类数:40中心:[ 4, 2 ]换位子群:[ 9, 1 ]自同构群:1296正规子群个数:47
[ 216, 112 ]:1,111,8,0,24,0,0,54,0,0,0,0,0,
0,共轭类数:60中心:[ 4, 2 ]换位子群:[ 27, 2 ]自同构群:69984正规子群个数:61
[ 216, 113 ]:1,39,26,0,150,0,0,0,0,0,0,0,0,
0,共轭类数:40中心:[ 12, 5 ]换位子群:[ 27, 3 ]自同构群:10368正规子群个数:46
[ 216, 114 ]:1,7,8,0,56,0,0,126,0,0,0,0,0,
0,共轭类数:216中心:[ 216, 114 ]换位子群:[ 1, 1 ]自同构群:18144正规子群个数:160
[ 216, 115 ]:1,7,26,0,182,0,0,0,0,0,0,0,0,
0,共轭类数:88中心:[ 24, 15 ]换位子群:[ 3, 1 ]自同构群:72576正规子群个数:112
[ 216, 116 ]:1,7,8,0,56,0,0,126,0,0,0,0,0,
0,共轭类数:88中心:[ 24, 15 ]换位子群:[ 3, 1 ]自同构群:9072正规子群个数:112
[ 216, 117 ]:1,1,26,18,26,36,36,0,0,0,0,0,0,
0,共轭类数:36中心:[ 6, 2 ]换位子群:[ 9, 2 ]自同构群:576正规子群个数:12
[ 216, 118 ]:1,1,26,18,26,108,36,0,0,0,0,0,0,
0,共轭类数:24中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:1728正规子群个数:11
[ 216, 119 ]:1,7,26,24,74,0,84,0,0,0,0,0,0,
0,共轭类数:54中心:[ 6, 2 ]换位子群:[ 9, 2 ]自同构群:288正规子群个数:36
[ 216, 120 ]:1,19,26,12,62,0,96,0,0,0,0,0,0,
0,共轭类数:54中心:[ 6, 2 ]换位子群:[ 9, 2 ]自同构群:576正规子群个数:32
[ 216, 121 ]:1,13,26,18,122,0,36,0,0,0,0,0,0,
0,共轭类数:45中心:[ 6, 2 ]换位子群:[ 18, 5 ]自同构群:576正规子群个数:28
[ 216, 122 ]:1,25,26,6,110,0,48,0,0,0,0,0,0,
0,共轭类数:45中心:[ 6, 2 ]换位子群:[ 18, 5 ]自同构群:288正规子群个数:28
[ 216, 123 ]:1,1,26,30,26,0,132,0,0,0,0,0,0,
0,共轭类数:45中心:[ 6, 2 ]换位子群:[ 18, 5 ]自同构群:576正规子群个数:28
[ 216, 124 ]:1,7,26,72,74,0,36,0,0,0,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:10368正规子群个数:46
[ 216, 125 ]:1,19,26,60,62,0,48,0,0,0,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:10368正规子群个数:38
[ 216, 126 ]:1,55,26,24,26,0,84,0,0,0,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:10368正规子群个数:36
[ 216, 127 ]:1,25,26,54,110,0,0,0,0,0,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:10368正规子群个数:34
[ 216, 128 ]:1,61,26,18,74,0,36,0,0,0,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:10368正规子群个数:34
[ 216, 129 ]:1,73,26,6,62,0,48,0,0,0,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:10368正规子群个数:34
[ 216, 130 ]:1,1,26,78,26,0,84,0,0,0,0,0,0,
0,共轭类数:33中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:10368正规子群个数:34
[ 216, 131 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,
0,共轭类数:30中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:1728正规子群个数:27
[ 216, 132 ]:1,37,26,18,98,0,36,0,0,0,0,0,0,
0,共轭类数:27中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:1728正规子群个数:23
[ 216, 133 ]:1,1,26,54,26,0,108,0,0,0,0,0,0,
0,共轭类数:27中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:5184正规子群个数:23
[ 216, 134 ]:1,1,80,6,80,0,48,0,0,0,0,0,0,
0,共轭类数:63中心:[ 18, 5 ]换位子群:[ 8, 4 ]自同构群:10368正规子群个数:40
[ 216, 135 ]:1,1,26,14,26,0,148,0,0,0,0,0,0,
0,共轭类数:81中心:[ 18, 5 ]换位子群:[ 6, 2 ]自同构群:2304正规子群个数:54
[ 216, 136 ]:1,7,26,8,74,0,100,0,0,0,0,0,0,
0,共轭类数:108中心:[ 36, 8 ]换位子群:[ 3, 1 ]自同构群:1152正规子群个数:66
[ 216, 137 ]:1,13,26,2,122,0,52,0,0,0,0,0,0,
0,共轭类数:81中心:[ 18, 5 ]换位子群:[ 6, 2 ]自同构群:2304正规子群个数:54
[ 216, 138 ]:1,3,26,12,78,0,96,0,0,0,0,0,0,
0,共轭类数:108中心:[ 36, 14 ]换位子群:[ 3, 1 ]自同构群:2304正规子群个数:78
[ 216, 139 ]:1,9,26,6,126,0,48,0,0,0,0,0,0,
0,共轭类数:81中心:[ 18, 5 ]换位子群:[ 6, 2 ]自同构群:1152正规子群个数:54
[ 216, 140 ]:1,1,26,38,26,0,124,0,0,0,0,0,0,
0,共轭类数:63中心:[ 6, 2 ]换位子群:[ 18, 5 ]自同构群:6912正规子群个数:42
[ 216, 141 ]:1,19,26,20,62,0,88,0,0,0,0,0,0,
0,共轭类数:72中心:[ 12, 2 ]换位子群:[ 9, 2 ]自同构群:3456正规子群个数:46
[ 216, 142 ]:1,37,26,2,98,0,52,0,0,0,0,0,0,
0,共轭类数:63中心:[ 6, 2 ]换位子群:[ 18, 5 ]自同构群:6912正规子群个数:42
[ 216, 143 ]:1,3,26,36,78,0,72,0,0,0,0,0,0,
0,共轭类数:72中心:[ 12, 5 ]换位子群:[ 9, 2 ]自同构群:6912正规子群个数:66
[ 216, 144 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,
0,共轭类数:63中心:[ 6, 2 ]换位子群:[ 18, 5 ]自同构群:3456正规子群个数:42
[ 216, 145 ]:1,1,26,110,26,0,52,0,0,0,0,0,0,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:2426112正规子群个数:87
[ 216, 146 ]:1,55,26,56,26,0,52,0,0,0,0,0,0,
0,共轭类数:60中心:[ 4, 1 ]换位子群:[ 27, 5 ]自同构群:1213056正规子群个数:89
[ 216, 147 ]:1,109,26,2,26,0,52,0,0,0,0,0,0,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:2426112正规子群个数:87
[ 216, 148 ]:1,3,26,108,78,0,0,0,0,0,0,0,0,
0,共轭类数:60中心:[ 4, 2 ]换位子群:[ 27, 5 ]自同构群:2426112正规子群个数:143
[ 216, 149 ]:1,57,26,54,78,0,0,0,0,0,0,0,0,
0,共轭类数:57中心:[ 2, 1 ]换位子群:[ 54, 15 ]自同构群:1213056正规子群个数:87
[ 216, 150 ]:1,3,26,4,78,0,104,0,0,0,0,0,0,
0,共轭类数:216中心:[ 216, 150 ]换位子群:[ 1, 1 ]自同构群:89856正规子群个数:224
[ 216, 151 ]:1,5,26,2,130,0,52,0,0,0,0,0,0,
0,共轭类数:135中心:[ 54, 15 ]换位子群:[ 2, 1 ]自同构群:89856正规子群个数:168
[ 216, 152 ]:1,1,26,6,26,0,156,0,0,0,0,0,0,
0,共轭类数:135中心:[ 54, 15 ]换位子群:[ 2, 1 ]自同构群:269568正规子群个数:168
[ 216, 153 ]:1,9,80,54,72,0,0,0,0,0,0,0,0,
0,共轭类数:10中心:[ 1, 1 ]换位子群:[ 72, 41 ]自同构群:432正规子群个数:5
[ 216, 154 ]:1,9,26,18,18,36,36,0,0,0,0,0,0,
0,共轭类数:27中心:[ 3, 1 ]换位子群:[ 9, 2 ]自同构群:288正规子群个数:10
[ 216, 155 ]:1,9,26,18,18,108,36,0,0,0,0,0,0,
0,共轭类数:15中心:[ 1, 1 ]换位子群:[ 27, 5 ]自同构群:864正规子群个数:9
[ 216, 156 ]:1,39,26,72,42,0,36,0,0,0,0,0,0,
0,共轭类数:18中心:[ 1, 1 ]换位子群:[ 27, 5 ]自同构群:864正规子群个数:14
[ 216, 157 ]:1,21,26,18,114,0,36,0,0,0,0,0,0,
0,共轭类数:27中心:[ 3, 1 ]换位子群:[ 18, 4 ]自同构群:288正规子群个数:14
[ 216, 158 ]:1,33,26,54,102,0,0,0,0,0,0,0,0,
0,共轭类数:18中心:[ 1, 1 ]换位子群:[ 54, 13 ]自同构群:432正规子群个数:11
[ 216, 159 ]:1,45,26,18,90,0,36,0,0,0,0,0,0,
0,共轭类数:15中心:[ 1, 1 ]换位子群:[ 54, 13 ]自同构群:864正规子群个数:11
[ 216, 160 ]:1,9,26,54,18,0,108,0,0,0,0,0,0,
0,共轭类数:18中心:[ 3, 1 ]换位子群:[ 18, 4 ]自同构群:864正规子群个数:14
[ 216, 161 ]:1,9,26,126,18,0,36,0,0,0,0,0,0,
0,共轭类数:12中心:[ 1, 1 ]换位子群:[ 54, 13 ]自同构群:864正规子群个数:11
[ 216, 162 ]:1,63,26,0,126,0,0,0,0,0,0,0,0,
0,共轭类数:27中心:[ 1, 1 ]换位子群:[ 27, 5 ]自同构群:1296正规子群个数:38
[ 216, 163 ]:1,9,80,6,72,0,48,0,0,0,0,0,0,
0,共轭类数:45中心:[ 9, 2 ]换位子群:[ 12, 3 ]自同构群:1152正规子群个数:24
[ 216, 164 ]:1,21,80,18,60,0,36,0,0,0,0,0,0,
0,共轭类数:27中心:[ 3, 1 ]换位子群:[ 36, 11 ]自同构群:864正规子群个数:18
[ 216, 165 ]:1,57,80,54,24,0,0,0,0,0,0,0,0,
0,共轭类数:21中心:[ 1, 1 ]换位子群:[ 108, 41 ]自同构群:93312正规子群个数:35
[ 216, 166 ]:1,15,80,0,120,0,0,0,0,0,0,0,0,
0,共轭类数:36中心:[ 3, 1 ]换位子群:[ 12, 5 ]自同构群:864正规子群个数:24
[ 216, 167 ]:1,39,80,0,96,0,0,0,0,0,0,0,0,
0,共轭类数:24中心:[ 1, 1 ]换位子群:[ 36, 14 ]自同构群:10368正规子群个数:21
[ 216, 168 ]:1,19,26,36,62,0,72,0,0,0,0,0,0,
0,共轭类数:36中心:[ 6, 2 ]换位子群:[ 9, 2 ]自同构群:576正规子群个数:20
[ 216, 169 ]:1,19,26,108,62,0,0,0,0,0,0,0,0,
0,共轭类数:24中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:1728正规子群个数:17
[ 216, 170 ]:1,31,26,0,158,0,0,0,0,0,0,0,0,
0,共轭类数:54中心:[ 6, 2 ]换位子群:[ 9, 2 ]自同构群:576正规子群个数:56
[ 216, 171 ]:1,79,26,0,110,0,0,0,0,0,0,0,0,
0,共轭类数:36中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:10368正规子群个数:56
[ 216, 172 ]:1,55,26,0,134,0,0,0,0,0,0,0,0,
0,共轭类数:30中心:[ 2, 1 ]换位子群:[ 27, 5 ]自同构群:5184正规子群个数:39
[ 216, 173 ]:1,7,80,0,128,0,0,0,0,0,0,0,0,
0,共轭类数:72中心:[ 18, 5 ]换位子群:[ 4, 2 ]自同构群:10368正规子群个数:68
[ 216, 174 ]:1,15,26,0,174,0,0,0,0,0,0,0,0,
0,共轭类数:108中心:[ 36, 14 ]换位子群:[ 3, 1 ]自同构群:6912正规子群个数:126
[ 216, 175 ]:1,39,26,0,150,0,0,0,0,0,0,0,0,
0,共轭类数:72中心:[ 12, 5 ]换位子群:[ 9, 2 ]自同构群:20736正规子群个数:82
[ 216, 176 ]:1,111,26,0,78,0,0,0,0,0,0,0,0,
0,共轭类数:60中心:[ 4, 2 ]换位子群:[ 27, 5 ]自同构群:7278336正规子群个数:151
[ 216, 177 ]:1,7,26,0,182,0,0,0,0,0,0,0,0,
0,共轭类数:216中心:[ 216, 177 ]换位子群:[ 1, 1 ]自同构群:1886976正规子群个数:448

这篇关于177种216阶群的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986489

相关文章

代码随想录算法训练营第十九天| 回溯理论、77. 组合、216. 组合总和Ⅲ、17. 电话号码的字母组合

今日内容 回溯的理论基础leetcode. 77 组合leetcode. 216 组合总和Ⅲleetcode. 17 电话号码的字母组合 回溯理论基础 回溯法也叫回溯搜索法,它是一种搜索的方式,而且只要有递归就会有回溯,回溯就是递归的副产品。 回溯说到底并不是什么非常高深的搜索方式,本质上仍然是穷举,穷举所有可能然后选择出我们要的答案。剪枝会使回溯法更加高效一点,但改变不了回溯本质就是穷举

基于STM32设计的防盗书包(华为云IOT)(216)

文章目录 一、前言1.1 项目介绍【1】开发背景【2】项目实现的功能【3】项目硬件模块组成 1.2 设计思路【1】整体设计思路【2】整体构架【3】上位机开发思路 1.3 项目开发背景【1】选题的意义【2】可行性分析【3】参考文献【4】摘要【5】项目背景 1.4 开发工具的选择【1】设备端开发【2】上位机开发 1.5 系统框架图1.6 系统功能总结1.7 设备原理图1.8 硬件实物图 二、硬件

Codeforces Round #177 (Div. 1) B. Polo the Penguin and Houses (组合数学)

题目地址:http://codeforces.com/contest/288/problem/B 首先,前面的k个与后面的n-k个是没关系的,后面的n-k个显然是(n-k)^(n-k),所以只需看前k个,而由于2-k都可以到达1,所以1放1-k都可以,所以这时只研究2-k个。      由于都要到达1,所以2-k必须有1,这时候讨论有多少个1,如果有x个1,则此时是C(k-1,x),然后再讨论

代码随想录算法训练营第二十四天| (回溯) 77. 组合、 216.组合总和III、17.电话号码的字母组合

77. 组合 题目链接:77. 组合 文档讲解:代码随想录 状态:很多细节忘了 思路:先画图,然后可以发现,从1到n中选择k个数,可以看成是一个递归过程,这个递归的深度就是k。然后遍历当前这层集合可以看作一个for循环,就是逐个元素尝试的过程。 for 循环:遍历集合的宽度,是一个取元素的过程。它负责在当前递归层次上,依次选择不同的元素,并将选择的元素添加到当前路径 path 中。

177.二叉树:从前序与中序遍历序列构造二叉树(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(in

代码随想录算法训练营第22、23天|回溯理论基础、组合问题、216.组合总和III 17.电话号码的字母组合

文章目录 前言回溯理论基础77、组合问题思路方法一 没有剪枝方法二 剪枝 216.组合总和III思路方法一 没有剪枝方法二 有剪枝 17.电话号码的字母组合思路方法一方法一2 隐藏回溯方法一3 不用字符串而是列表来处理 总结 前言 回溯理论基础 回溯可以用于解决一些经典的问题,可以看到理论框架, 回溯的框架 77、组合问题 思路 回溯算法引入:C5-2这样

代码随想录算法训练营第二十五天| 216. 组合总和 III、17. 电话号码的字母组合

[LeetCode] 216. 组合总和 III [LeetCode] 216. 组合总和 III 文章解释 [LeetCode] 216. 组合总和 III 视频解释 题目: 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件: 只使用数字1到9每个数字 最多使用一次  返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。 示例 1: 输入: k =

day25回溯算法part02| 216.组合总和III 17.电话号码的字母组合

216.组合总和III 题目链接/文章讲解 | 视频讲解 class Solution {public:vector<vector<int>> result;vector<int> path;int sum;void backtracking(int n, int k, int startindex) {// int sum = accumulate(path.begin(), path

代码随想录算法训练营第二十五天 | 216.组合总和III、17.电话号码的字母组合

216.组合总和III 题目链接:https://leetcode.cn/problems/combination-sum-iii/ 文档讲解:https://programmercarl.com/0216.%E7%BB%84%E5%90%88%E6%80%BB%E5%92%8CIII.html 视频讲解:https://www.bilibili.com/video/BV1wg411873x

LeetCode 题解(216) : Intersection of Two Linked Lists

题目: Write a program to find the node at which the intersection of two singly linked lists begins. For example, the following two linked lists: A: a1 → a2↘c1 → c2 → c3↗ B: