Alexnet VGG GoogleNet ResNet

2024-05-13 16:32
文章标签 resnet alexnet vgg googlenet

本文主要是介绍Alexnet VGG GoogleNet ResNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep <wbr>Residual <wbr>Learning(zz)


关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。如果读者是初接触CNN,建议可以先看一看“Deep Learning(深度学习)学习笔记整理系列”中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助。

  1. Lenet,1986年
  2. Alexnet,2012年
  3. GoogleNet,2014年
  4. VGG,2014年
  5. Deep Residual Learning,2015年

Lenet

就从Lenet说起,可以看下caffe中lenet的配置文件(点我),可以试着理解每一层的大小,和各种参数。由两个卷积层,两个池化层,以及两个全连接层组成。 卷积都是5*5的模板,stride=1,池化都是MAX。下图是一个类似的结构,可以帮助理解层次结构(和caffe不完全一致,不过基本上差不多)

这里写图片描述

Alexnet

2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名)。caffe的model文件在这里。说实话,这个model的意义比后面那些model都大很多,首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,确实让CNN和GPU都大火了一把,顺便推动了有监督DL的发展。

模型结构见下图,别看只有寥寥八层(不算input层),但是它有60M以上的参数总量,事实上在参数量上比后面的网络都大。

这里写图片描述

这个图有点点特殊的地方是卷积部分都是画成上下两块,意思是说吧这一层计算出来的feature map分开,但是前一层用到的数据要看连接的虚线,如图中input层之后的第一层第二层之间的虚线是分开的,是说二层上面的128map是由一层上面的48map计算的,下面同理;而第三层前面的虚线是完全交叉的,就是说每一个192map都是由前面的128+128=256map同时计算得到的。

Alexnet有一个特殊的计算层,LRN层,做的事是对当前层的输出结果做平滑处理。下面是我画的示意图:

这里写图片描述

前后几层(对应位置的点)对中间这一层做一下平滑约束,计算方法是:

这里写图片描述

具体打开Alexnet的每一阶段(含一次卷积主要计算)来看[2][3]:

(1)con - relu - pooling - LRN

这里写图片描述

具体计算都在图里面写了,要注意的是input层是227*227,而不是paper里面的224*224,这里可以算一下,主要是227可以整除后面的conv1计算,224不整除。如果一定要用224可以通过自动补边实现,不过在input就补边感觉没有意义,补得也是0。

(2)conv - relu - pool - LRN

这里写图片描述

和上面基本一样,唯独需要注意的是group=2,这个属性强行把前面结果的feature map分开,卷积部分分成两部分做。

(3)conv - relu

这里写图片描述

(4)conv-relu

这里写图片描述

(5)conv - relu - pool

这里写图片描述

(6)fc - relu - dropout

这里写图片描述

这里有一层特殊的dropout层,在alexnet中是说在训练的以1/2概率使得隐藏层的某些neuron的输出为0,这样就丢到了一半节点的输出,BP的时候也不更新这些节点。 
(7) 
fc - relu - dropout 
这里写图片描述
(8)fc - softmax 
这里写图片描述

以上图借用[3],感谢。

GoogleNet

googlenet[4][5],14年比赛冠军的model,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构。(当然,它并没有证明浅的层次不能达到这样的效果)

这里写图片描述

这个model基本上构成部件和alexnet差不多,不过中间有好几个inception的结构:

这里写图片描述

是说一分四,然后做一些不同大小的卷积,之后再堆叠feature map。

计算量如下图,可以看到参数总量并不大,但是计算次数是非常大的。 
这里写图片描述

VGG

VGG有很多个版本,也算是比较稳定和经典的model。它的特点也是连续conv多,计算量巨大(比前面几个都大很多)。具体的model结构可以参考[6],这里给一个简图。基本上组成构建就是前面alexnet用到的。 
这里写图片描述

下面是几个model的具体结构,可以查阅,很容易看懂。

这里写图片描述

Deep Residual Learning

这个model是2015年底最新给出的,也是15年的imagenet比赛冠军。可以说是进一步将conv进行到底,其特殊之处在于设计了“bottleneck”形式的block(有跨越几层的直连)。最深的model采用的152层!!下面是一个34层的例子,更深的model见表格。 
这里写图片描述  
其实这个model构成上更加简单,连LRN这样的layer都没有了。

这里写图片描述

block的构成见下图:

这里写图片描述

总结

OK,到这里把常见的最新的几个model都介绍完了,可以看到,目前cnn model的设计思路基本上朝着深度的网络以及更多的卷积计算方向发展。虽然有点暴力,但是效果上确实是提升了。当然,我认为以后会出现更优秀的model,方向应该不是更深,而是简化。是时候动一动卷积计算的形式了。

参考资料

[1] http://blog.csdn.net/zouxy09/article/details/8781543/ 
[2] ImageNet Classification with Deep Convolutional Neural Networks 
[3] http://blog.csdn.net/sunbaigui/article/details/39938097 
[4] http://blog.csdn.net/csyhhb/article/details/45967291 
[5] Going deeper with convolutions 
[6] VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

这篇关于Alexnet VGG GoogleNet ResNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986228

相关文章

Resnet图像识别入门——残差结构

桃树、杏树、梨树,你不让我,我不让你,都开满了花赶趟儿。红的像火,粉的像霞,白的像雪。花里带着甜味儿;闭了眼,树上仿佛已经满是桃儿、杏儿、梨儿。花下成千成百的蜜蜂嗡嗡地闹着,大小的蝴蝶飞来飞去。野花遍地是:杂样儿,有名字的,没名字的,散在草丛里,像眼睛,像星星,还眨呀眨的。 朱自清在写《春》的时候,或许也没有完全认清春天的所有花,以至于写出了“有名字的,没名字的,散在草丛中”这样的句子。

【ShuQiHere】从残差思想到 ResNet:深度学习的突破性创新

【ShuQiHere】引言 在深度学习的迅速发展中,卷积神经网络(CNN)凭借其在计算机视觉领域的出色表现,已经成为一种主流的神经网络架构。然而,随着网络层数的增加,研究人员逐渐发现了一个关键问题:梯度消失 😖 和 梯度爆炸 💥,这使得训练非常深的网络变得极其困难。为了解决这一问题,残差思想 💡 被提出,并在 2015 年由 Kaiming He 等人正式引入 ResNet 中。这一创新不

【python 走进pytotch】pytorch实现用Resnet提取特征

无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂, 而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。点这里可以跳转到教程。人工智能教程 准备一张图片,pytorch可以方便地实现用预训练的网络提取特征。 下面我们用pytorch提取图片采用预训练网络resnet50,提取图片特征。 # -*- coding: utf-8 -*-import os

【深度学习 卷积】利用ResNet-50模型实现高效GPU图片预测

本文介绍了如何使用训练好的ResNet-50模型进行图片预测。通过详细阐述模型原理、训练过程及预测步骤,帮助读者掌握基于深度学习的图片识别技术。 一、引言 近年来,深度学习技术在计算机视觉领域取得了显著成果,特别是卷积神经网络(CNN)在图像识别、分类等方面表现出色。ResNet-50作为一种经典的CNN模型,以其强大的特征提取能力和较高的预测准确率,在众多领域得到了广泛应用。本文将介绍如何使

深度学习-TensorFlow2:TensorFlow2 创建CNN神经网络模型【ResNet模型】

自定义ResNet神经网络-Tensorflow【cifar100分类数据集】 import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 放在 import tensorflow as tf 之前才有效import tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras

深度学习-Pytorch:Pytorch 创建CNN神经网络模型【ResNet模型】

一、自定义ResNet神经网络-Pytorch【cifar10图片分类数据集】 import torchfrom torch.utils.data import DataLoaderfrom torchvision import datasetsfrom torchvision import transformsfrom torch import nn, optimfrom torch

CV-CNN-2016:GoogleNet-V4【用ResNet模型的残差连接(Residual Connection)思想改进GoogleNet-V3的结构】

Inception V4研究了Inception模块与残差连接的结合。 ResNet结构大大地加深了网络深度,还极大地提升了训练速度,同时性能也有提升。 Inception V4主要利用残差连接(Residual Connection)来改进V3结构,得到Inception-ResNet-v1,Inception-ResNet-v2,Inception-v4网络。 ResNet的残差结构如下

CV-CNN-2015:GoogleNet-V3【贡献:卷积核分解(Factorization)减少参数量,比如将7x7分解成两个一维的卷积(1x7,7x1)】【避免表达瓶颈,更深】

Inception V3一个最重要的改进是分解(Factorization),将7x7分解成两个一维的卷积(1x7,7x1),3x3也是一样(1x3,3x1),这样的好处,既可以加速计算,又可以将1个卷积拆成2个卷积,使得网络深度进一步增加,增加了网络的非线性(每增加一层都要进行ReLU)。 另外,网络输入从224x224变为了299x299。 参考资料: CNN模型合集 | 7

CV-CNN-2015:GoogleNet-V2【首次提出Batch Norm方法:每次先对input数据进行归一化,再送入下层神经网络输入层(解决了协方差偏移问题)】【小的卷积核代替掉大的卷积核】

GoogLeNet凭借其优秀的表现,得到了很多研究人员的学习和使用,因此GoogLeNet团队又对其进行了进一步地发掘改进,产生了升级版本的GoogLeNet。 GoogLeNet设计的初衷就是要又准又快,而如果只是单纯的堆叠网络虽然可以提高准确率,但是会导致计算效率有明显的下降,所以如何在不增加过多计算量的同时提高网络的表达能力就成为了一个问题。 Inception V2版本的解决方案就是修

ncnn之resnet图像分类网络模型部署

文章目录 一、ONNX模型导出二、模型转换ONNX2NCNN2.1 net.param文件2.2 net.bin文件 三、ncnn模型推理四、编译与运行 一、ONNX模型导出 将 PyTorch 模型导出为 ONNX 格式,代码如下: import torchimport torchvision.models as modelsimport torch.onnx as o