随机投影森林-一种近似最近邻方法(ANN)

2024-05-13 03:32

本文主要是介绍随机投影森林-一种近似最近邻方法(ANN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自:http://blog.sina.com.cn/s/blog_7103b28a0102w1ny.html


当数据个数比较大的时候,线性搜索寻找KNN的时间开销太大,而且需要读取所有的数据在内存中,这是不现实的。因此,实际工程上,使用近似最近邻也就是ANN问题。其中一种方法是利用随机投影树,对所有的数据进行划分,将每次搜索与计算的点的数目减小到一个可接受的范围,然后建立多个随机投影树构成随机投影森林,将森林的综合结果作为最终的结果。

​建立一棵随机投影树的过程大致如下(以二维空间为例):

随机选取一个从原点出发的向量,与这个向量垂直的直线将平面内的点划分为了两部分,将属于这两部分的点分别划分给左子树和右子树。在数学计算上,是通过计算各个点与垂直向量的点积完成这一步骤的,点积大于零的点划分到左子树,点积小于零的点划分到右子树。注意一点,图中不带箭头的直线是用于划分左右子树的依据,带箭头的向量是用于计算点积的。这样,原有的点就划分为了两部分,图例如下:


但是此时一个划分结果内的点的数目还是比较多,因此继续划分。再次随机选取一个向量,与该向量垂直的直线将所有点进行了划分。图例如下:


注意一点,此时的划分是在上一次划分的基础上进行的。​也就是说现在图中的点已经被划分成了四部分,对应于一棵深度为2,有四个叶节点的树。以此类推继续划分下去,直到每个叶节点中点的数目都达到一个足够小的数目。注意这棵树并不是完全树。

利用这棵树对新的点进行最近邻计算时,首先通过计算该点与每次划分所用向量的点积,来找到其所属于的叶节点,然后利用这个叶节点内的​​这些点进行最近邻算法的计算。这个过程是一棵随机投影树的计算过程,利用同样的方法,建立多个随机投影树构成随机森林,将森林的总和结果作为最终的结果。

python中可以完成这个功能的模块包括RPForest和sklearn.neighbors中的LSHForest。


下面这篇讲的更加形象一些,转自:http://blog.csdn.net/armily/article/details/8923961

在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一颗决策树进行分类,最后取所有决策树中分类结果最多的那类为最终的结果。因此随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。随机森林可以既可以处理属性为离散值的量,比如ID3算法,也可以处理属性为连续值的量,比如C4.5算法。另外,随机森林还可以用来进行无监督学习聚类和异常点检测。

    随机森林由决策树组成,决策树实际上是将空间用超平面进行划分的一种方法,每次分割的时候,都将当前的空间一分为二,比如说下面的决策树(其属性的值都是连续的实数):

  

  将空间划分为成的样子为:

  

  随机深林的优点:比较适合做多分类问题;训练和预测速度快;对训练数据的容错能力,是一种有效地估计缺失数据的一种方法,当数据集中有大比例的数据缺失时仍然可以保持精度不变;能够有效地处理大的数据集;可以处理没有删减的成千上万的变量;能够在分类的过程中可以生成一个泛化误差的内部无偏估计;能够检测到特征之间的相互影响以及重要性程度;不过出现过度拟合;实现简单容易并行化。

 

  下面是具体决策树的生成过程:

  

  其中关于信息增益这里就不作具体的介绍,反正信息增益越大,就说明那个属性相对来说越重要。流程图中的identical values 可以理解为是分类值,离散值,就是它本身不具备数值的意义,比如说颜色分为红,绿,蓝等,是人为给它标定的一个离散值而已。流程图中的real values可以理解为连续的实数,也就是说属性本身是具有数值的,比如说物体的长度,这就是一个real value,在进行这种连续值属性构造决策数时,需要按照属性值的范围进行生成子节点。

 

  当可以生成好决策树后,就比较容易生成随机森林了。下面是随机森林的构造过程:

  1. 假如有N个样本,则有放回的随机选择N个样本(每次随机选择一个样本,然后返回继续选择)。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。

  2. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。

  3. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。

  4. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

  从上面的步骤可以看出,随机森林的随机性体现在每颗数的训练样本是随机的,树中每个节点的分类属性也是随机选择的。有了这2个随机的保证,随机森林就不会产生过拟合的现象了。

 

  随机森林有2个参数需要人为控制,一个是森林中树的数量,一般建议取很大。另一个是m的大小,推荐m的值为M的均方根。

 

  参考资料:

      决策树模型组合之随机森林与GBDT

     random forest

     http://en.wikipedia.org/wiki/Random_forest

 

 

作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 欢迎转载或分享,但请务必声明文章出处。


这篇关于随机投影森林-一种近似最近邻方法(ANN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984561

相关文章

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

springboot中配置logback-spring.xml的方法

《springboot中配置logback-spring.xml的方法》文章介绍了如何在SpringBoot项目中配置logback-spring.xml文件来进行日志管理,包括如何定义日志输出方式、... 目录一、在src/main/resources目录下,也就是在classpath路径下创建logba

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

C# GC回收的方法实现

《C#GC回收的方法实现》本文主要介绍了C#GC回收的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、什么是 GC? 二、GC 管理的是哪部分内存? 三、GC 什么时候触发?️ 四、GC 如何判断一个对象是“垃圾