Python数据科学 | ​Python 离群点检测算法 -- GMM

2024-05-11 05:52

本文主要是介绍Python数据科学 | ​Python 离群点检测算法 -- GMM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“Python数据科学,仅用于学术分享,侵权删,干货满满。

原文链接:​Python 离群点检测算法 -- GMM

星星在天空中聚集或分散,呈现出自然的分布。在统计学中,K-均值法是一种著名的聚类技术,可以识别出不同的聚类。而高斯混合模型(GMM)则提供了另一种视角,假设星星可能遵循多个不同的高斯分布。与 K-均值法相比,GMM 更具灵活性,因为 K-均值法只是 GMM 的一种特例。

GMM 是由杜达和哈特在 1973 年的论文中提出的无监督学习算法。如今,GMM 已被广泛应用于异常检测、信号处理、语言识别以及音频片段分类等领域。在接下来的章节中,我会首先解释 GMM 及其与 K-均值法的关系,并介绍 GMM 如何定义异常值。然后,我会演示如何使用 GMM 进行建模。

1 什么是高斯混合模型(GMM)

数据点分为四组,分别展示在图 (1) 中。有多种方法可以用来解释这些数据。K-means 方法假设固定数量的聚类,本例中为四个聚类,并将每个数据点分配到其中。而 GMM 方法则假设具有不同均值和标准差的固定数量的高斯分布。

我会将图 (1) 和 (2) 纵向对齐,以比较 GMM 和 K-means。GMM 使用四种分布的概率来描述数据点,而 K-means 将数据点识别到一个聚类中。假设一个数据点位于最左端。K-means 会说它属于聚类 1,而 GMM 可能会说它有 90% 的概率来自红色分布,9% 的概率来自橙色分布,0.9% 的概率来自蓝色分布,0.1% 的概率来自绿色分布,或者 [90%, 9%, 0.9%, 0.1%] 的概率来自 [红色、橙色、蓝色、绿色] 分布。K-means 可以看作是 GMM 的一种特例,因为一个数据点属于一个聚类的概率是 1,而其他所有概率都是 0,或者我们可以说 K-means 进行的是硬分类,而高斯进行的是软分类。

图(1)

图(2)

2 与 K-means 相比,GMM 有哪些优势?

K-means 是一种简单快速的聚类方法,但可能会强制将数据点归入一个聚类,无法捕捉到数据的模式。相比之下,GMM 能更直观地描述潜在的数据模式,例如对于明天天气的预测,我们会更谨慎地表达预测结果。

3 从高斯到 GMM

GMM的另一个原因是实例的分布是多模态的,即数据分布中存在不止一个"峰值"。多模态分布看起来像单模态分布的混合物。高斯分布是单模态分布,并具有许多良好的特性,因此是混合模型的理想选择。

4 我们试图解决的问题

5 利用贝叶斯定理提供帮助

6 GMM 如何获得参数估计?

三组未知参数需要估计:z、µ、σ。估计标准高斯分布中的µ和σ时,可以使用最大对数似然估计法(MLE)。在线性回归中可能学习过MLE。现在加入一个未知参数z,在应用MLE估算µ和σ之前,可以先猜测z的任意值。然后将θ=(µ, σ)返回计算并更新z。这个迭代过程称为期望最大化算法。

6.1 最大对数似然估计(MLE)

最大对数相似估计

第二个等式表明,由于i.i.d.属性,联合密度概率可以表示为单个密度函数的乘积。i.i.d.属性的假设使得许多优化问题变得容易解决,因为它意味着抽取的样本xi与其他样本无关。在许多应用中,这一假设都不无道理。

最后,我们可以通过分别对(µ, σ)求导并令每个导数为零来求解(µ, σ)的值。

6.2 期望最大化

如果数据点来自多个分布中的不同分布时,估计工作变得更加复杂。但即使如此,我们仍然可以使用期望最大化(E-M)算法来推导参数。该算法利用贝叶斯统计,并包括以下两个步骤(E-M)。

7 GMM 如何定义离群点得分?

GMM输出数据点的概率分布,并以此定义离群值的方法。当拟合值非常低时,数据点被视为离群值。为了保持一致性,低拟合值会被反转为高拟合值,作为离群值分数。

7.1 建模流程

为了离群点分数,需要选择一个阈值,以将离群点分数较高的异常观测值与正常观测值区分开来。如果先验知识表明异常值的百分比不应超过1%,则可以选择一个使异常值约为1%的阈值。

描述性统计(如均值和标准差)对于解释模型的合理性非常重要。如果预期异常组的特征平均值高于正常组,而结果恰恰相反,就需要调查、修改或放弃该特征并重新建模。

7.2 第 1 步 - 建立模型

我将使用 PyOD 的generate_data()函数生成10%的离群值。数据生成过程 (DGP) 将模拟六个变量。尽管模拟数据集有目标变量 Y,但无监督模型只使用 X 变量,而 Y 变量仅用于验证。异常值的百分比被设置为5%,即"contamination=0.05"

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyod.utils.data import generate_data
contamination = 0.05 # percentage of outliers
n_train = 500       # number of training points
n_test = 500        # number of testing points
n_features = 6      # number of features
X_train, X_test, y_train, y_test = generate_data(n_train=n_train, n_test=n_test, n_features= n_features, contamination=contamination, random_state=123)X_train_pd = pd.DataFrame(X_train)
X_train_pd.head()

结果:

把前两个变量绘制成散点图。散点图中的黄色点是百分之十的异常值。紫色点为正常观测值。

# Plot
plt.scatter(X_train_pd[0], X_train_pd[1], c=y_train, alpha=0.8)
plt.title('Scatter plot')
plt.xlabel('x0')
plt.ylabel('x1')
plt.show()

PyOD的统一应用程序接口使建立模型变得非常容易。首先我们声明并拟合模型,然后使用decision_functions()函数生成训练数据和测试数据的离群值。

参数contamination=0.05表示污染率为5%。这个参数代表异常值的百分比。通常情况下,我们无法得知离群值的百分比,因此需要根据先验知识指定一个值。PyOD默认将污染率设为10%。尽管该参数不影响离群值分数的计算,但PyOD会用它来推导离群值的阈值,并应用predict()函数来分配标签(1或0)。我创建了一个简短的函数count_stat()来显示预测值为"1"和"0"的计数。语法.threshold_显示了指定污染率的阈值。任何高于阈值的离群值都被视为离群值。

from pyod.models.gmm import GMM
gmm = GMM(n_components=4, contamination=0.05) 
gmm.fit(X_train)# Training data
y_train_scores = gmm.decision_function(X_train)
y_train_pred = gmm.predict(X_train)# Test data
y_test_scores = gmm.decision_function(X_test)
y_test_pred = gmm.predict(X_test) # outlier labels (0 or 1)def count_stat(vector):# Because it is '0' and '1', we can run a count statistic. unique, counts = np.unique(vector, return_counts=True)return dict(zip(unique, counts))print("The training data:", count_stat(y_train_pred))
print("The training data:", count_stat(y_test_pred))
# Threshold for the defined comtanimation rate
print("The threshold for the defined comtanimation rate:" , gmm.threshold_)
The training data: {0: 475, 1: 25}
The training data: {0: 466, 1: 34}
The threshold for the defined comtanimation rate:
4.321327580839012
gmm.get_params()
{'contamination': 0.05,'covariance_type': 'full','init_params': 'kmeans','max_iter': 100,'means_init': None,'n_components': 4,'n_init': 1,'precisions_init': None,'random_state': None,'reg_covar': 1e-06,'tol': 0.001,'warm_start': False,'weights_init': None}

7.3 步骤 2 - 确定合理的阈值

在大多数情况下,我们并不知道异常值的百分比。可以利用离群值的直方图来选择一个合理的阈值,阈值决定异常组的大小。如果先验知识表明异常值的百分比不应超过 1%,可以选择一个导致约 1%异常值的阈值。图 (H.2) 显示了离群值的直方图,我们似乎可以将阈值设置为 200.0,因为直方图中存在一个自然切点。选择较低的阈值会导致较高数量的异常值,反之亦然。

import matplotlib.pyplot as plt
plt.hist(y_train_scores, bins='auto')  # arguments are passed to np.histogram
plt.title("Histogram with 'auto' bins")
plt.xlabel('GMM outlier score')
plt.show()

7.4 步骤 3 - 显示正常组和异常组的汇总统计数据

根据第1章所述,两组特征的描述性统计(如均值和标准差)对于证明模型的合理性非常关键。我已经编写了一个简短的函数descriptive_stat_threshold(),用于显示基于阈值的正常组和异常组特征的大小和描述性统计。在接下来的内容中,我将阈值简单设置为5%。您可以测试不同的阈值来确定合理的离群值组大小。

threshold = gmm.threshold_ # Or other value from the above histogramdef descriptive_stat_threshold(df,pred_score, threshold):# Let's see how many '0's and '1's.df = pd.DataFrame(df)df['Anomaly_Score'] = pred_scoredf['Group'] = np.where(df['Anomaly_Score']< threshold, 'Normal', 'Outlier')# Now let's show the summary statistics:cnt = df.groupby('Group')['Anomaly_Score'].count().reset_index().rename(columns={'Anomaly_Score':'Count'})cnt['Count %'] = (cnt['Count'] / cnt['Count'].sum()) * 100 # The count and count %stat = df.groupby('Group').mean().round(2).reset_index() # The avg.stat = cnt.merge(stat, left_on='Group',right_on='Group') # Put the count and the avg. togetherreturn (stat)descriptive_stat_threshold(X_train,y_train_scores, threshold)

上表显示了正常组和异常组的特征。它显示了正常组和异常组的计数和计数百分比。异常分数 "是平均异常分数。提醒您用特征名称标注特征,以便有效展示。该表告诉我们几个重要结果:

  • 异常值组的大小: 离群值大约占5%。离群组的大小取决于阈值。如果选择较高的阈值,就会缩小异常值。

  • 平均异常值: 异常值组的平均异常值远高于正常组(9.63>-0.37)。不需要对分数做太多解释。

  • 各组的特征统计: 离群组的特征均值小于正常组。离群组中特征的均值应该更高还是更低,取决于业务应用。重要的是,所有均值都应与领域知识保持一致。

由于我们在数据生成过程中掌握了基本事实,因此可以生成混淆矩阵来了解模型的性能。该模型能够识别所有 25 个离群值。

Actual_pred = pd.DataFrame({'Actual': y_test, 'Anomaly_Score': y_test_scores})
Actual_pred['Pred'] = np.where(Actual_pred['Anomaly_Score']< threshold,0,1)
pd.crosstab(Actual_pred['Actual'],Actual_pred['Pred'])

7.5 通过聚合多个模型实现模型稳定性

分布方法容易受训练数据过拟合和噪声影响。GMM试图学习特定分布的参数,如果分布不准确,会产生异常值。过多的基本高斯分布会导致过度拟合数据。

过度拟合模型会导致不稳定的结果,解决方法是使用一系列超参数训练模型,然后汇总得分,以降低过拟合的几率,并提高预测准确率。

为避免假设大量混合成分,创建了七个不同聚类的GMM模型,并汇总平均预测值作为最终模型预测值。

from pyod.models.combination import aom, moa, average, maximization
from pyod.utils.utility import standardizer
from pyod.models.gmm import GMM# Standardize data
X_train_norm, X_test_norm = standardizer(X_train, X_test)
# Test a range of clusters from 2 to 8. There will be 7 models.
n_clf = 7
k_list = [2, 3, 4, 5, 6, 7, 8]
# Just prepare data frames so we can store the model results
train_scores = np.zeros([X_train.shape[0], n_clf])
test_scores = np.zeros([X_test.shape[0], n_clf])
train_scores.shape
# Modeling
for i in range(n_clf):k = k_list[i]gmm = GMM(n_components = k) gmm.fit(X_train_norm)# Store the results in each column:test_scores[:, i] = gmm.decision_function(X_test_norm) 
# Decision scores have to be normalized before combination
train_scores_norm, test_scores_norm = standardizer(train_scores,test_scores)

预测结果被归一化并存储在数据帧 "train_scores_norm "中。PyOD 模块提供了四种聚合方法,您只需使用一种方法即可得出结果。

# Combination by average
# The test_scores_norm is 500 x 7. The "average" function will take the average of the 7 columns. 
# The result "y_by_average" is a single column: 
y_train_by_average = average(train_scores_norm)
y_test_by_average = average(test_scores_norm)
import matplotlib.pyplot as plt
plt.hist(y_train_by_average, bins='auto') # arguments are passed to np.histogram
plt.title("Combination by average")
plt.show()

训练数据平均预测值直方图

上图描绘了离群值的直方图,建议将 2.0 作为阈值。接着,表中的描述性统计表,确定了 22 个数据点为离群值。

descriptive_stat_threshold(X_train,y_train_by_average, 2.0)

image
 

8 GMM 算法概述

  • GMM使用不同分布的概率来描述数据点,而K-means将数据点识别到一个聚类中。

  • 条件概率p(z|x)可理解为"给定数据点x,它属于z的概率为p(z|x)",利用贝叶斯定理可得后验概率p(z|x)。

  • GMM使用期望最大化法找出后验概率p(z|x)的最佳值。E步为数据点属于某一分布的概率指定一个初始"猜测",然后计算出MLE。M步是估计参数的标准MLE。新参数输入E步,再次分配后验概率。E步和M步将反复进行,直到收敛。

  • 与基本高斯分布拟合值较低的数据点被视为异常值。

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于Python数据科学 | ​Python 离群点检测算法 -- GMM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978682

相关文章

浅析Python中的绝对导入与相对导入

《浅析Python中的绝对导入与相对导入》这篇文章主要为大家详细介绍了Python中的绝对导入与相对导入的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1 Imports快速介绍2 import语句的语法2.1 基本使用2.2 导入声明的样式3 绝对import和相对i

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3