从零入门激光SLAM(十三)——LeGo-LOAM源码超详细解析4

2024-05-10 09:36

本文主要是介绍从零入门激光SLAM(十三)——LeGo-LOAM源码超详细解析4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好呀,我是一个SLAM方向的在读博士,深知SLAM学习过程一路走来的坎坷,也十分感谢各位大佬的优质文章和源码。随着知识的越来越多,越来越细,我准备整理一个自己的激光SLAM学习笔记专栏,从0带大家快速上手激光SLAM,也方便想入门SLAM的同学和小白学习参考,相信看完会有一定的收获。如有不对的地方欢迎指出,欢迎各位大佬交流讨论,一起进步。博主创建了一个科研互助群****Q:772356582,欢迎大家加入讨论。

一、整体框架

1.1 目的

主要根据里程计获得的先验位姿进行后端优化,闭环检测和图优化

1.2 输入

//接收相机坐标系下的点和里程计
//上一帧角点
subLaserCloudCornerLast = nh.subscribe<sensor_msgs::PointCloud2>("/laser_cloud_corner_last", 2, &mapOptimization::laserCloudCornerLastHandler, this); 
//上一帧面点
subLaserCloudSurfLast = nh.subscribe<sensor_msgs::PointCloud2>("/laser_cloud_surf_last", 2, &mapOptimization::laserCloudSurfLastHandler, this);
//上一帧无效点
subOutlierCloudLast = nh.subscribe<sensor_msgs::PointCloud2>("/outlier_cloud_last", 2, &mapOptimization::laserCloudOutlierLastHandler, this); 
//里程计位姿
subLaserOdometry = nh.subscribe<nav_msgs::Odometry>("/laser_odom_to_init", 5, &mapOptimization::laserOdometryHandler, this);  
//IMU数据
subImu = nh.subscribe<sensor_msgs::Imu> (imuTopic, 50, &mapOptimization::imuHandler, this); 

1.3 输出

//机器人关键帧在全局坐标系下的位置信息,轨迹
pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("/key_pose_origin", 2);
//机器人周围激光雷达点云数据
pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("/laser_cloud_surround", 2);
//经过位姿图优化和点云配准后的里程计信息
pubOdomAftMapped = nh.advertise<nav_msgs::Odometry> ("/aft_mapped_to_init", 5);
//机器人历史轨迹的点云数据
pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("/history_cloud", 2);
//经过ICP配准后的机器人激光雷达点云数据
pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("/corrected_cloud", 2);
//机器人最近获取的点云数据
pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("/recent_cloud", 2);
//经过位姿图优化和点云配准后的机器人点云数据用于建图
pubRegisteredCloud = nh.advertise<sensor_msgs::PointCloud2>("/registered_cloud", 2);

主函数

主要的功能是在run函数里面

int main(int argc, char** argv)
{ros::init(argc, argv, "lego_loam");ROS_INFO("\033[1;32m---->\033[0m Map Optimization Started.");mapOptimization MO;// 1.进行闭环检测与闭环的功能std::thread loopthread(&mapOptimization::loopClosureThread, &MO);// 2.将数据发布到ros中,可视化std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO);ros::Rate rate(200);while (ros::ok()){ros::spinOnce();MO.run(); //进入执行run函数rate.sleep();}loopthread.join();visualizeMapThread.join();return 0;
}
// 3.run函数
void run(){if (timeLaserOdometry - timeLastProcessing >= mappingProcessInterval) {timeLastProcessing = timeLaserOdometry;transformAssociateToMap(); //转换到map坐标系下extractSurroundingKeyFrames(); //提取周围的关键帧downsampleCurrentScan(); //下采样当前帧// 当前扫描进行边缘优化,图优化以及进行LM优化的过程scan2MapOptimization();saveKeyFramesAndFactor(); //保存关键帧和因子correctPoses(); //校正位姿publishTF(); //发布坐标变换publishKeyPosesAndFrames(); //发布关键帧和因子clearCloud();}}} //清除点云

二、函数解析

2.1 transformAssociateToMap

  • 作用:将坐标转移到世界坐标系下,得到可用于建图的Lidar坐标
  • 输入:transformBefMapped[] 前一帧在世界坐标系的位姿
  •  transformSum  当前帧的位姿
    
  • 输出:transformTobeMapped当前帧在世界坐标系的位置
  • 代码:
 void transformAssociateToMap(){float x1 = cos(transformSum[1]) * (transformBefMapped[3] - transformSum[3]) - sin(transformSum[1]) * (transformBefMapped[5] - transformSum[5]);float y1 = transformBefMapped[4] - transformSum[4];float z1 = sin(transformSum[1]) * (transformBefMapped[3] - transformSum[3]) + cos(transformSum[1]) * (transformBefMapped[5] - transformSum[5]);float x2 = x1;float y2 = cos(transformSum[0]) * y1 + sin(transformSum[0]) * z1;float z2 = -sin(transformSum[0]) * y1 + cos(transformSum[0]) * z1;// 计算平移增量transformIncre[3] = cos(transformSum[2]) * x2 + sin(transformSum[2]) * y2;transformIncre[4] = -sin(transformSum[2]) * x2 + cos(transformSum[2]) * y2;transformIncre[5] = z2;……x1 = cos(transformTobeMapped[2]) * transformIncre[3] - sin(transformTobeMapped[2]) * transformIncre[4];y1 = sin(transformTobeMapped[2]) * transformIncre[3] + cos(transformTobeMapped[2])* transformIncre[4];z1 = transformIncre[5];x2 = x1;y2 = cos(transformTobeMapped[0]) * y1 - sin(transformTobeMapped[0]) * z1;z2 = sin(transformTobeMapped[0]) * y1 + cos(transformTobeMapped[0]) * z1;transformTobeMapped[3] = transformAftMapped[3] - (cos(transformTobeMapped[1]) * x2 + sin(transformTobeMapped[1]) * z2);transformTobeMapped[4] = transformAftMapped[4] - y2;transformTobeMapped[5] = transformAftMapped[5] - (-sin(transformTobeMapped[1]) * x2 + cos(transformTobeMapped[1]) * z2);}

详情请见。。。
https://www.guyuehome.com/46822

这篇关于从零入门激光SLAM(十三)——LeGo-LOAM源码超详细解析4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976071

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get