【智能算法】人工原生动物优化算法(APO)原理及实现

2024-05-10 01:52

本文主要是介绍【智能算法】人工原生动物优化算法(APO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.获取代码


1.背景

2024年,X Wang受到自然界原生动物启发,提出了人工原生动物优化算法( Artificial Protozoa Optimizer, APO)。

在这里插入图片描述

在这里插入图片描述

2.算法原理

2.1算法思想

APO通过模拟原生动物的觅食、休眠和繁殖行为来模拟原生动物的生存机制。

在这里插入图片描述

2.2算法过程

觅食行为

对于觅食行为,作者考虑了原生动物的内部和外部因素。内部因素被认为是原生动物的觅食特征,而外部因素被认为是环境影响,如物种碰撞和竞争行为。
X i n e w = X i + f ⋅ ( X j − X i + 1 n p ⋅ ∑ k = 1 n p w a ⋅ ( X k − − X k + ) ) ⊙ M f X i = [ x i 1 , x i 2 , … , x i d i m ] , X i = s o r t ( X i ) (1) \begin{aligned}&X_{i}^{new}=X_{i}+f\cdot(X_{j}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{a}\cdot(X_{k-}-X_{k+}))\odot M_{f}\\&X_{i}=[x_{i}^{1},x_{i}^{2},\ldots,x_{i}^{dim}],\quad X_{i}=sort(X_{i})\end{aligned}\tag{1} Xinew=Xi+f(XjXi+np1k=1npwa(XkXk+))MfXi=[xi1,xi2,,xidim],Xi=sort(Xi)(1)
f = r a n d ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) n p m a x = ⌊ p s − 1 2 ⌋ w a = e − ∣ f ( X k − ) f ( X k + ) + e p s ∣ M f [ d i ] = { 1 , if d i is in r a n d p e r m ( d i m , ⌈ d i m ⋅ i p s ⌉ ) 0 , otherwise (2) f=rand\cdot(1+\cos(\frac{iter}{iter_{max}}\cdot\pi))\\ np_{max}=\lfloor\frac{ps-1}{2}\rfloor \\ w_{a}=e^{-\left|\frac{f(X_{k-})}{f(X_{k+})+eps}\right|}\\ M_f[di]=\begin{cases}1,&\text{if}di\text{is in}\:randperm(dim,\lceil dim\cdot\frac{i}\\{ps}\rceil)\\0,&\text{otherwise}\end{cases}\tag{2} f=rand(1+cos(itermaxiterπ))npmax=2ps1wa=e f(Xk+)+epsf(Xk) Mf[di]={1,0,ifdiis inrandperm(dim,dimips⌉)otherwise(2)
其中𝑋𝑛𝑒𝑤和𝑋分别表示𝑖th原生动物的更新位置和原始位置。𝑋𝑗是随机选择的𝑗th原生动物。𝑋𝑘−表示在𝑘th配对邻居中随机选择一个排序指数小于0.05的原生动物。𝑓表示觅食因子,𝑛𝑝表示外部因素之间的邻居对个数,𝑛𝑝𝑚𝑎为𝑛𝑝的最大值。𝑤𝑎是自养模式下的权重因子,⊙表示Hadamard积。
异养模式在黑暗中,原生动物可以通过从周围环境中吸收有机物来获取营养。假设𝑋𝑛𝑒𝑎𝑟是附近一个食物丰富的地方,原生动物就会向那里移动。
X i n e w = X i + f ⋅ ( X n e a r − X i + 1 n p ⋅ ∑ k = 1 n p w h ⋅ ( X i − k − X i + k ) ) ⊙ M f X n e a r = ( 1 ± R a n d ⋅ ( 1 − i t e r i t e r m a x ) ) ⊙ X i w h = e − ∣ f ( X i − k ) f ( X i + k ) + e p s ∣ R a n d = [ r a n d 1 , r a n d 2 , … , r a n d d i m ] (3) \begin{aligned} &X_{i}^{new}=X_{i}+f\cdot(X_{near}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{h}\cdot(X_{i-k}-X_{i+k}))\odot M_{f} \\ &X_{near}=(1\pm Rand\cdot(1-\frac{iter}{iter_{max}}))\odot X_{i} \\ &w_{h}=e^{-\left|\frac{f(X_{i-k})}{f(X_{i+k})+eps}\right|} \\ &Rand=[rand_{1},rand_{2},\ldots,rand_{dim}] \end{aligned}\tag{3} Xinew=Xi+f(XnearXi+np1k=1npwh(XikXi+k))MfXnear=(1±Rand(1itermaxiter))Xiwh=e f(Xi+k)+epsf(Xik) Rand=[rand1,rand2,,randdim](3)
其中𝑋𝑛𝑒𝑎𝑟是附近的位置,“±”表示𝑋𝑛𝑒𝑎𝑟可能与𝑖th原生动物在不同的方向。Xi-k表示从𝑘th配对邻居中选出的i-k原生动物。
在这里插入图片描述

休眠行为

在环境压力下,原生动物可能会采取休眠行为作为一种生存策略来忍受不利的条件。当原生动物处于休眠状态时,它会被新产生的原生动物所取代,以保持恒定的种群数量。
X i n e w = X m i n + R a n d ⊙ ( X m a x − X m i n ) X m i n = [ l b 1 , l b 2 , … , l b d i m ] , X m a x = [ u b 1 , u b 2 , … , u b d i m ] (4) \begin{aligned}&X_{i}^{new}=X_{min}+Rand\odot(X_{max}-X_{min})\\&X_{min}=[lb_{1},lb_{2},\ldots,lb_{dim}],\quad X_{max}=[ub_{1},ub_{2},\ldots,ub_{dim}]\end{aligned}\tag{4} Xinew=Xmin+Rand(XmaxXmin)Xmin=[lb1,lb2,,lbdim],Xmax=[ub1,ub2,,ubdim](4)

繁殖行为

在适当的年龄和健康状况下,原生动物进行无性繁殖,这被称为二元裂变。理论上,这种繁殖会导致原生动物分裂成两个完全相同的子代。我们通过产生一个重复的原生动物并考虑扰动来模拟这种行为。
X i n e w = X i ± r a n d ⋅ ( X m i n + R a n d ⊙ ( X m a x − X m i n ) ) ⊙ M r M r [ d i ] = { 1 , i f d i i s i n r a n d p e r m ( d i m , ⌈ d i m ⋅ r a n d ⌉ ) 0 , o t h e r w i s e (5) \begin{aligned}&X_{i}^{new}=X_{i}\pm rand\cdot(X_{min}+Rand\odot(X_{max}-X_{min}))\odot M_{r}\\&M_{r}[di]=\begin{cases}1,&\mathrm{~if~}di\mathrm{~is~in~}randperm(dim,\lceil dim\cdot rand\rceil)\\0,&\mathrm{~otherwise}\end{cases}\end{aligned}\tag{5} Xinew=Xi±rand(Xmin+Rand(XmaxXmin))MrMr[di]={1,0, if di is in randperm(dim,dimrand⌉) otherwise(5)
APO涉及的参数:
p f = p f m a x ⋅ r a n d p a h = 1 2 ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) p d r = 1 2 ⋅ ( 1 + cos ⁡ ( ( 1 − i p s ) ⋅ π ) ) (6) \begin{aligned} &pf=pf_{max}\cdot rand \\ &p_{ah}={\frac{1}{2}}\cdot(1+\cos({\frac{iter}{iter_{max}}}\cdot\pi)) \\ &p_{dr}={\frac{1}{2}}\cdot(1+\cos((1-{\frac{i}{ps}})\cdot\pi)) \end{aligned}\tag{6} pf=pfmaxrandpah=21(1+cos(itermaxiterπ))pdr=21(1+cos((1psi)π))(6)
其中pf为原生动物种群中休眠和繁殖的比例分数,pah表示自养和异养行为的概率,pdr表示休眠和繁殖的概率。

在这里插入图片描述

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试APO性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F20

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Wang X, Snášel V, Mirjalili S, et al. Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization[J]. Knowledge-Based Systems, 2024: 111737.

5.获取代码

这篇关于【智能算法】人工原生动物优化算法(APO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975100

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形