【智能算法】人工原生动物优化算法(APO)原理及实现

2024-05-10 01:52

本文主要是介绍【智能算法】人工原生动物优化算法(APO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.获取代码


1.背景

2024年,X Wang受到自然界原生动物启发,提出了人工原生动物优化算法( Artificial Protozoa Optimizer, APO)。

在这里插入图片描述

在这里插入图片描述

2.算法原理

2.1算法思想

APO通过模拟原生动物的觅食、休眠和繁殖行为来模拟原生动物的生存机制。

在这里插入图片描述

2.2算法过程

觅食行为

对于觅食行为,作者考虑了原生动物的内部和外部因素。内部因素被认为是原生动物的觅食特征,而外部因素被认为是环境影响,如物种碰撞和竞争行为。
X i n e w = X i + f ⋅ ( X j − X i + 1 n p ⋅ ∑ k = 1 n p w a ⋅ ( X k − − X k + ) ) ⊙ M f X i = [ x i 1 , x i 2 , … , x i d i m ] , X i = s o r t ( X i ) (1) \begin{aligned}&X_{i}^{new}=X_{i}+f\cdot(X_{j}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{a}\cdot(X_{k-}-X_{k+}))\odot M_{f}\\&X_{i}=[x_{i}^{1},x_{i}^{2},\ldots,x_{i}^{dim}],\quad X_{i}=sort(X_{i})\end{aligned}\tag{1} Xinew=Xi+f(XjXi+np1k=1npwa(XkXk+))MfXi=[xi1,xi2,,xidim],Xi=sort(Xi)(1)
f = r a n d ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) n p m a x = ⌊ p s − 1 2 ⌋ w a = e − ∣ f ( X k − ) f ( X k + ) + e p s ∣ M f [ d i ] = { 1 , if d i is in r a n d p e r m ( d i m , ⌈ d i m ⋅ i p s ⌉ ) 0 , otherwise (2) f=rand\cdot(1+\cos(\frac{iter}{iter_{max}}\cdot\pi))\\ np_{max}=\lfloor\frac{ps-1}{2}\rfloor \\ w_{a}=e^{-\left|\frac{f(X_{k-})}{f(X_{k+})+eps}\right|}\\ M_f[di]=\begin{cases}1,&\text{if}di\text{is in}\:randperm(dim,\lceil dim\cdot\frac{i}\\{ps}\rceil)\\0,&\text{otherwise}\end{cases}\tag{2} f=rand(1+cos(itermaxiterπ))npmax=2ps1wa=e f(Xk+)+epsf(Xk) Mf[di]={1,0,ifdiis inrandperm(dim,dimips⌉)otherwise(2)
其中𝑋𝑛𝑒𝑤和𝑋分别表示𝑖th原生动物的更新位置和原始位置。𝑋𝑗是随机选择的𝑗th原生动物。𝑋𝑘−表示在𝑘th配对邻居中随机选择一个排序指数小于0.05的原生动物。𝑓表示觅食因子,𝑛𝑝表示外部因素之间的邻居对个数,𝑛𝑝𝑚𝑎为𝑛𝑝的最大值。𝑤𝑎是自养模式下的权重因子,⊙表示Hadamard积。
异养模式在黑暗中,原生动物可以通过从周围环境中吸收有机物来获取营养。假设𝑋𝑛𝑒𝑎𝑟是附近一个食物丰富的地方,原生动物就会向那里移动。
X i n e w = X i + f ⋅ ( X n e a r − X i + 1 n p ⋅ ∑ k = 1 n p w h ⋅ ( X i − k − X i + k ) ) ⊙ M f X n e a r = ( 1 ± R a n d ⋅ ( 1 − i t e r i t e r m a x ) ) ⊙ X i w h = e − ∣ f ( X i − k ) f ( X i + k ) + e p s ∣ R a n d = [ r a n d 1 , r a n d 2 , … , r a n d d i m ] (3) \begin{aligned} &X_{i}^{new}=X_{i}+f\cdot(X_{near}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{h}\cdot(X_{i-k}-X_{i+k}))\odot M_{f} \\ &X_{near}=(1\pm Rand\cdot(1-\frac{iter}{iter_{max}}))\odot X_{i} \\ &w_{h}=e^{-\left|\frac{f(X_{i-k})}{f(X_{i+k})+eps}\right|} \\ &Rand=[rand_{1},rand_{2},\ldots,rand_{dim}] \end{aligned}\tag{3} Xinew=Xi+f(XnearXi+np1k=1npwh(XikXi+k))MfXnear=(1±Rand(1itermaxiter))Xiwh=e f(Xi+k)+epsf(Xik) Rand=[rand1,rand2,,randdim](3)
其中𝑋𝑛𝑒𝑎𝑟是附近的位置,“±”表示𝑋𝑛𝑒𝑎𝑟可能与𝑖th原生动物在不同的方向。Xi-k表示从𝑘th配对邻居中选出的i-k原生动物。
在这里插入图片描述

休眠行为

在环境压力下,原生动物可能会采取休眠行为作为一种生存策略来忍受不利的条件。当原生动物处于休眠状态时,它会被新产生的原生动物所取代,以保持恒定的种群数量。
X i n e w = X m i n + R a n d ⊙ ( X m a x − X m i n ) X m i n = [ l b 1 , l b 2 , … , l b d i m ] , X m a x = [ u b 1 , u b 2 , … , u b d i m ] (4) \begin{aligned}&X_{i}^{new}=X_{min}+Rand\odot(X_{max}-X_{min})\\&X_{min}=[lb_{1},lb_{2},\ldots,lb_{dim}],\quad X_{max}=[ub_{1},ub_{2},\ldots,ub_{dim}]\end{aligned}\tag{4} Xinew=Xmin+Rand(XmaxXmin)Xmin=[lb1,lb2,,lbdim],Xmax=[ub1,ub2,,ubdim](4)

繁殖行为

在适当的年龄和健康状况下,原生动物进行无性繁殖,这被称为二元裂变。理论上,这种繁殖会导致原生动物分裂成两个完全相同的子代。我们通过产生一个重复的原生动物并考虑扰动来模拟这种行为。
X i n e w = X i ± r a n d ⋅ ( X m i n + R a n d ⊙ ( X m a x − X m i n ) ) ⊙ M r M r [ d i ] = { 1 , i f d i i s i n r a n d p e r m ( d i m , ⌈ d i m ⋅ r a n d ⌉ ) 0 , o t h e r w i s e (5) \begin{aligned}&X_{i}^{new}=X_{i}\pm rand\cdot(X_{min}+Rand\odot(X_{max}-X_{min}))\odot M_{r}\\&M_{r}[di]=\begin{cases}1,&\mathrm{~if~}di\mathrm{~is~in~}randperm(dim,\lceil dim\cdot rand\rceil)\\0,&\mathrm{~otherwise}\end{cases}\end{aligned}\tag{5} Xinew=Xi±rand(Xmin+Rand(XmaxXmin))MrMr[di]={1,0, if di is in randperm(dim,dimrand⌉) otherwise(5)
APO涉及的参数:
p f = p f m a x ⋅ r a n d p a h = 1 2 ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) p d r = 1 2 ⋅ ( 1 + cos ⁡ ( ( 1 − i p s ) ⋅ π ) ) (6) \begin{aligned} &pf=pf_{max}\cdot rand \\ &p_{ah}={\frac{1}{2}}\cdot(1+\cos({\frac{iter}{iter_{max}}}\cdot\pi)) \\ &p_{dr}={\frac{1}{2}}\cdot(1+\cos((1-{\frac{i}{ps}})\cdot\pi)) \end{aligned}\tag{6} pf=pfmaxrandpah=21(1+cos(itermaxiterπ))pdr=21(1+cos((1psi)π))(6)
其中pf为原生动物种群中休眠和繁殖的比例分数,pah表示自养和异养行为的概率,pdr表示休眠和繁殖的概率。

在这里插入图片描述

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试APO性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F20

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Wang X, Snášel V, Mirjalili S, et al. Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization[J]. Knowledge-Based Systems, 2024: 111737.

5.获取代码

这篇关于【智能算法】人工原生动物优化算法(APO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975100

相关文章

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi