【智能算法】人工原生动物优化算法(APO)原理及实现

2024-05-10 01:52

本文主要是介绍【智能算法】人工原生动物优化算法(APO)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.结果展示
    • 4.参考文献
    • 5.获取代码


1.背景

2024年,X Wang受到自然界原生动物启发,提出了人工原生动物优化算法( Artificial Protozoa Optimizer, APO)。

在这里插入图片描述

在这里插入图片描述

2.算法原理

2.1算法思想

APO通过模拟原生动物的觅食、休眠和繁殖行为来模拟原生动物的生存机制。

在这里插入图片描述

2.2算法过程

觅食行为

对于觅食行为,作者考虑了原生动物的内部和外部因素。内部因素被认为是原生动物的觅食特征,而外部因素被认为是环境影响,如物种碰撞和竞争行为。
X i n e w = X i + f ⋅ ( X j − X i + 1 n p ⋅ ∑ k = 1 n p w a ⋅ ( X k − − X k + ) ) ⊙ M f X i = [ x i 1 , x i 2 , … , x i d i m ] , X i = s o r t ( X i ) (1) \begin{aligned}&X_{i}^{new}=X_{i}+f\cdot(X_{j}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{a}\cdot(X_{k-}-X_{k+}))\odot M_{f}\\&X_{i}=[x_{i}^{1},x_{i}^{2},\ldots,x_{i}^{dim}],\quad X_{i}=sort(X_{i})\end{aligned}\tag{1} Xinew=Xi+f(XjXi+np1k=1npwa(XkXk+))MfXi=[xi1,xi2,,xidim],Xi=sort(Xi)(1)
f = r a n d ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) n p m a x = ⌊ p s − 1 2 ⌋ w a = e − ∣ f ( X k − ) f ( X k + ) + e p s ∣ M f [ d i ] = { 1 , if d i is in r a n d p e r m ( d i m , ⌈ d i m ⋅ i p s ⌉ ) 0 , otherwise (2) f=rand\cdot(1+\cos(\frac{iter}{iter_{max}}\cdot\pi))\\ np_{max}=\lfloor\frac{ps-1}{2}\rfloor \\ w_{a}=e^{-\left|\frac{f(X_{k-})}{f(X_{k+})+eps}\right|}\\ M_f[di]=\begin{cases}1,&\text{if}di\text{is in}\:randperm(dim,\lceil dim\cdot\frac{i}\\{ps}\rceil)\\0,&\text{otherwise}\end{cases}\tag{2} f=rand(1+cos(itermaxiterπ))npmax=2ps1wa=e f(Xk+)+epsf(Xk) Mf[di]={1,0,ifdiis inrandperm(dim,dimips⌉)otherwise(2)
其中𝑋𝑛𝑒𝑤和𝑋分别表示𝑖th原生动物的更新位置和原始位置。𝑋𝑗是随机选择的𝑗th原生动物。𝑋𝑘−表示在𝑘th配对邻居中随机选择一个排序指数小于0.05的原生动物。𝑓表示觅食因子,𝑛𝑝表示外部因素之间的邻居对个数,𝑛𝑝𝑚𝑎为𝑛𝑝的最大值。𝑤𝑎是自养模式下的权重因子,⊙表示Hadamard积。
异养模式在黑暗中,原生动物可以通过从周围环境中吸收有机物来获取营养。假设𝑋𝑛𝑒𝑎𝑟是附近一个食物丰富的地方,原生动物就会向那里移动。
X i n e w = X i + f ⋅ ( X n e a r − X i + 1 n p ⋅ ∑ k = 1 n p w h ⋅ ( X i − k − X i + k ) ) ⊙ M f X n e a r = ( 1 ± R a n d ⋅ ( 1 − i t e r i t e r m a x ) ) ⊙ X i w h = e − ∣ f ( X i − k ) f ( X i + k ) + e p s ∣ R a n d = [ r a n d 1 , r a n d 2 , … , r a n d d i m ] (3) \begin{aligned} &X_{i}^{new}=X_{i}+f\cdot(X_{near}-X_{i}+\frac{1}{np}\cdot\sum_{k=1}^{np}w_{h}\cdot(X_{i-k}-X_{i+k}))\odot M_{f} \\ &X_{near}=(1\pm Rand\cdot(1-\frac{iter}{iter_{max}}))\odot X_{i} \\ &w_{h}=e^{-\left|\frac{f(X_{i-k})}{f(X_{i+k})+eps}\right|} \\ &Rand=[rand_{1},rand_{2},\ldots,rand_{dim}] \end{aligned}\tag{3} Xinew=Xi+f(XnearXi+np1k=1npwh(XikXi+k))MfXnear=(1±Rand(1itermaxiter))Xiwh=e f(Xi+k)+epsf(Xik) Rand=[rand1,rand2,,randdim](3)
其中𝑋𝑛𝑒𝑎𝑟是附近的位置,“±”表示𝑋𝑛𝑒𝑎𝑟可能与𝑖th原生动物在不同的方向。Xi-k表示从𝑘th配对邻居中选出的i-k原生动物。
在这里插入图片描述

休眠行为

在环境压力下,原生动物可能会采取休眠行为作为一种生存策略来忍受不利的条件。当原生动物处于休眠状态时,它会被新产生的原生动物所取代,以保持恒定的种群数量。
X i n e w = X m i n + R a n d ⊙ ( X m a x − X m i n ) X m i n = [ l b 1 , l b 2 , … , l b d i m ] , X m a x = [ u b 1 , u b 2 , … , u b d i m ] (4) \begin{aligned}&X_{i}^{new}=X_{min}+Rand\odot(X_{max}-X_{min})\\&X_{min}=[lb_{1},lb_{2},\ldots,lb_{dim}],\quad X_{max}=[ub_{1},ub_{2},\ldots,ub_{dim}]\end{aligned}\tag{4} Xinew=Xmin+Rand(XmaxXmin)Xmin=[lb1,lb2,,lbdim],Xmax=[ub1,ub2,,ubdim](4)

繁殖行为

在适当的年龄和健康状况下,原生动物进行无性繁殖,这被称为二元裂变。理论上,这种繁殖会导致原生动物分裂成两个完全相同的子代。我们通过产生一个重复的原生动物并考虑扰动来模拟这种行为。
X i n e w = X i ± r a n d ⋅ ( X m i n + R a n d ⊙ ( X m a x − X m i n ) ) ⊙ M r M r [ d i ] = { 1 , i f d i i s i n r a n d p e r m ( d i m , ⌈ d i m ⋅ r a n d ⌉ ) 0 , o t h e r w i s e (5) \begin{aligned}&X_{i}^{new}=X_{i}\pm rand\cdot(X_{min}+Rand\odot(X_{max}-X_{min}))\odot M_{r}\\&M_{r}[di]=\begin{cases}1,&\mathrm{~if~}di\mathrm{~is~in~}randperm(dim,\lceil dim\cdot rand\rceil)\\0,&\mathrm{~otherwise}\end{cases}\end{aligned}\tag{5} Xinew=Xi±rand(Xmin+Rand(XmaxXmin))MrMr[di]={1,0, if di is in randperm(dim,dimrand⌉) otherwise(5)
APO涉及的参数:
p f = p f m a x ⋅ r a n d p a h = 1 2 ⋅ ( 1 + cos ⁡ ( i t e r i t e r m a x ⋅ π ) ) p d r = 1 2 ⋅ ( 1 + cos ⁡ ( ( 1 − i p s ) ⋅ π ) ) (6) \begin{aligned} &pf=pf_{max}\cdot rand \\ &p_{ah}={\frac{1}{2}}\cdot(1+\cos({\frac{iter}{iter_{max}}}\cdot\pi)) \\ &p_{dr}={\frac{1}{2}}\cdot(1+\cos((1-{\frac{i}{ps}})\cdot\pi)) \end{aligned}\tag{6} pf=pfmaxrandpah=21(1+cos(itermaxiterπ))pdr=21(1+cos((1psi)π))(6)
其中pf为原生动物种群中休眠和繁殖的比例分数,pah表示自养和异养行为的概率,pdr表示休眠和繁殖的概率。

在这里插入图片描述

流程图

在这里插入图片描述

伪代码

在这里插入图片描述

3.结果展示

使用测试框架,测试APO性能 一键run.m

  • 【智能算法】省时方便,智能算法统计指标——一键运行~

CEC2017-F20

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] Wang X, Snášel V, Mirjalili S, et al. Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization[J]. Knowledge-Based Systems, 2024: 111737.

5.获取代码

这篇关于【智能算法】人工原生动物优化算法(APO)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975100

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig