YOLOv9改进策略 | 添加注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制

2024-05-10 01:12

本文主要是介绍YOLOv9改进策略 | 添加注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、本文介绍

这篇文章给大家带来的改进机制是一个汇总篇,包含一些简单的注意力机制,本来一直不想发这些内容的(网上教程太多了,发出来增加文章数量也没什么意义),但是群内的读者很多都问我这些机制所以单独出一期视频来汇总一些比较简单的注意力机制添加的方法和使用教程,本文的内容不会过度的去解释原理,更多的是从从代码的使用上和实用的角度出发去写这篇教程。

欢迎大家订阅我的专栏一起学习YOLO!  

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 


目录

 一、本文介绍

二、GAM

2.1 GAM的介绍

2.2 GAM的核心代码

三、CBAM

3.1 CBAM的介绍

​编辑​​

3.2 CBAM核心代码

四、CA

4.1 CA的介绍

4.2 CA核心代码

五、ECA

5.1 ECA的介绍

 5.2 ECA核心代码

六、注意力机制的添加方法

6.1 修改一

6.2 修改二 

6.3 修改三 

6.4 修改四 

七、yaml文件

7.1 添加位置1 

7.1 添加位置2

八、本文总结


二、GAM

2.1 GAM的介绍

​​官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转

​​


简单介绍:GAM旨在通过设计一种机制,减少信息损失并放大全局维度互动特征,从而解决传统注意力机制在通道和空间两个维度上保留信息不足的问题。GAM采用了顺序的通道-空间注意力机制,并对子模块进行了重新设计。具体来说,通道注意力子模块使用3D排列来跨三个维度保留信息,并通过一个两层的MLP增强跨维度的通道-空间依赖性。在空间注意力子模块中,为了更好地关注空间信息,采用了两个卷积层进行空间信息融合,同时去除了可能导致信息减少的最大池化操作,通过使用分组卷积和通道混洗在ResNet50中避免参数数量显著增加。GAM在不同的神经网络架构上稳定提升性能,特别是对于ResNet18,GAM以更少的参数和更好的效率超过了ABN,其简单原理结构图如下所示。

​​


2.2 GAM的核心代码

import torch
import torch.nn as nn'''
https://arxiv.org/abs/2112.05561
'''class GAM(nn.Module):def __init__(self, in_channels, rate=4):super().__init__()out_channels = in_channelsin_channels = int(in_channels)out_channels = int(out_channels)inchannel_rate = int(in_channels/rate)self.linear1 = nn.Linear(in_channels, inchannel_rate)self.relu = nn.ReLU(inplace=True)self.linear2 = nn.Linear(inchannel_rate, in_channels)self.conv1=nn.Conv2d(in_channels, inchannel_rate,kernel_size=7,padding=3,padding_mode='replicate')self.conv2=nn.Conv2d(inchannel_rate, out_channels,kernel_size=7,padding=3,padding_mode='replicate')self.norm1 = nn.BatchNorm2d(inchannel_rate)self.norm2 = nn.BatchNorm2d(out_channels)self.sigmoid = nn.Sigmoid()def forward(self,x):b, c, h, w = x.shape# B,C,H,W ==> B,H*W,Cx_permute = x.permute(0, 2, 3, 1).view(b, -1, c)# B,H*W,C ==> B,H,W,Cx_att_permute = self.linear2(self.relu(self.linear1(x_permute))).view(b, h, w, c)# B,H,W,C ==> B,C,H,Wx_channel_att = x_att_permute.permute(0, 3, 1, 2)x = x * x_channel_attx_spatial_att = self.relu(self.norm1(self.conv1(x)))x_spatial_att = self.sigmoid(self.norm2(self.conv2(x_spatial_att)))out = x * x_spatial_attreturn outif __name__ == '__main__':img = torch.rand(1,64,32,48)b, c, h, w = img.shapenet = GAM(in_channels=c, out_channels=c)output = net(img)print(output.shape)


三、CBAM

3.1 CBAM的介绍

​​

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转

​​

简单介绍:CBAM的主要思想是通过关注重要的特征并抑制不必要的特征来增强网络的表示能力。模块首先应用通道注意力,关注"重要的"特征,然后应用空间注意力,关注这些特征的"重要位置"。通过这种方式,CBAM有效地帮助网络聚焦于图像中的关键信息,提高了特征的表示力度,下图为其简单原理结构图。 

​​


3.2 CBAM核心代码

import torch
import torch.nn as nnclass ChannelAttention(nn.Module):"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""def __init__(self, channels: int) -> None:"""Initializes the class and sets the basic configurations and instance variables required."""super().__init__()self.pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)self.act = nn.Sigmoid()def forward(self, x: torch.Tensor) -> torch.Tensor:"""Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""return x * self.act(self.fc(self.pool(x)))class SpatialAttention(nn.Module):"""Spatial-attention module."""def __init__(self, kernel_size=7):"""Initialize Spatial-attention module with kernel size argument."""super().__init__()assert kernel_size in (3, 7), "kernel size must be 3 or 7"padding = 3 if kernel_size == 7 else 1self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)self.act = nn.Sigmoid()def forward(self, x):"""Apply channel and spatial attention on input for feature recalibration."""return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))class CBAM(nn.Module):"""Convolutional Block Attention Module."""def __init__(self, c1, kernel_size=7):"""Initialize CBAM with given input channel (c1) and kernel size."""super().__init__()self.channel_attention = ChannelAttention(c1)self.spatial_attention = SpatialAttention(kernel_size)def forward(self, x):"""Applies the forward pass through C1 module."""return self.spatial_attention(self.channel_attention(x))


四、CA

4.1 CA的介绍

​​

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转

​​


简单介绍: 坐标注意力是一种结合了通道注意力和位置信息的注意力机制,旨在提升移动网络的性能。它通过将特征张量沿两个空间方向进行1D全局池化,分别捕获沿垂直和水平方向的特征,保留了精确的位置信息并捕获了长距离依赖性。这两个方向的特征图被单独编码成方向感知和位置敏感的注意力图,然后这些注意力图通过乘法作用于输入特征图,以突出感兴趣的对象表示。坐标注意力的引入,使得模型能够更准确地定位和识别感兴趣的对象,同时由于其轻量级和灵活性,它可以轻松集成到现有的移动网络架构中,几乎不会增加计算开销。

​​


4.2 CA核心代码

import torch
import torch.nn as nn
import math
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, reduction=32):super(CoordAtt, self).__init__()oup = inpself.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn,c,h,w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y) x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out

五、ECA

5.1 ECA的介绍

​​

官方论文地址:官方论文地址点击此处即可跳转

官方代码地址:官方代码地址点击此处即可跳转

​​

简单介绍:ECA(Efficient Channel Attention)注意力机制的原理可以总结为:避免通道注意力模块中的降维操作,通过采用局部跨通道交互策略,利用1D卷积实现高效的通道注意力计算。这种方法保持了性能的同时显著减少了模型的复杂性,通过自适应选择卷积核大小,确定了局部跨通道交互的覆盖范围。 ECA模块通过少量参数和低计算成本,实现了在ResNets和MobileNetV2等主干网络上的显著性能提升,且相对于其他注意力模块具有更高的效率和更好的性能。 


 5.2 ECA核心代码

import torch
from torch import nn
from torch.nn.parameter import Parameterclass ECA(nn.Module):"""Constructs a ECA module.Args:channel: Number of channels of the input feature mapk_size: Adaptive selection of kernel size"""def __init__(self, channel, k_size=3):super(ECA, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid()def forward(self, x):# feature descriptor on the global spatial informationy = self.avg_pool(x)# Two different branches of ECA moduley = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)# Multi-scale information fusiony = self.sigmoid(y)return x * y.expand_as(x)


六、注意力机制的添加方法

6.1 修改一

第一还是建立文件,我们找到如下yolov9-main/models文件夹下建立一个目录名字呢就是'modules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


6.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


6.3 修改三 

第三步我门中到如下文件'yolov5-master/models/yolo.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!

​​


6.4 修改四 

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


七、yaml文件

7.1 添加位置1 

下面的文件是配置好的yaml文件,其中包含了四个注意力机制,其中默认先用的CBAM大家使用那个只需要把其他的注释掉即可

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[[-1, 1, CBAM, []],  # 添加一行我们的改进机制可以替换其它注意力机制在这个位置,这里以CBAM为例# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]],  # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]


7.1 添加位置2

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],# conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# conv down[-1, 1, Conv, [256, 3, 2]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# conv down[-1, 1, Conv, [512, 3, 2]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# conv down[-1, 1, Conv, [512, 3, 2]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)[-1, 1, CBAM, []],  # 17 添加一行我们的改进机制# conv-down merge[-1, 1, Conv, [256, 3, 2]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)[-1, 1, CBAM, []],  # 21 添加一行我们的改进机制# conv-down merge[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 24 (P5/32-large)[-1, 1, CBAM, []],  # 25 添加一行我们的改进机制# routing[5, 1, CBLinear, [[256]]], # 26[7, 1, CBLinear, [[256, 512]]], # 27[9, 1, CBLinear, [[256, 512, 512]]], # 28# conv down[0, 1, Conv, [64, 3, 2]],  # 29-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 30-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 31# conv down fuse[-1, 1, Conv, [256, 3, 2]],  # 32-P3/8[[26, 27, 28, -1], 1, CBFuse, [[0, 0, 0]]], # 33# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 34[-1, 1, CBAM, []],  # 35 添加一行我们的改进机制# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 36-P4/16[[27, 28, -1], 1, CBFuse, [[1, 1]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38[-1, 1, CBAM, []],  # 39 添加一行我们的改进机制# conv down fuse[-1, 1, Conv, [512, 3, 2]],  # 40-P5/32[[28, -1], 1, CBFuse, [[2]]], # 41# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 42[-1, 1, CBAM, []],  # 43 添加一行我们的改进机制# detect[[35, 39, 43, 17, 21, 25], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

使用方法同上!


想要学习添加更多添加位置更多机制欢迎大家订阅专栏~ 


八、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分96分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

这篇关于YOLOv9改进策略 | 添加注意力篇 | 一文带你改进GAM、CBAM、CA、ECA等通道注意力机制和多头注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/975014

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确

FreeRTOS内部机制学习03(事件组内部机制)

文章目录 事件组使用的场景事件组的核心以及Set事件API做的事情事件组的特殊之处事件组为什么不关闭中断xEventGroupSetBitsFromISR内部是怎么做的? 事件组使用的场景 学校组织秋游,组长在等待: 张三:我到了 李四:我到了 王五:我到了 组长说:好,大家都到齐了,出发! 秋游回来第二天就要提交一篇心得报告,组长在焦急等待:张三、李四、王五谁先写好就交谁的

UVM:callback机制的意义和用法

1. 作用         Callback机制在UVM验证平台,最大用处就是为了提高验证平台的可重用性。在不创建复杂的OOP层次结构前提下,针对组件中的某些行为,在其之前后之后,内置一些函数,增加或者修改UVM组件的操作,增加新的功能,从而实现一个环境多个用例。此外还可以通过Callback机制构建异常的测试用例。 2. 使用步骤         (1)在UVM组件中内嵌callback函