大模型微调实战之强化学习 贝尔曼方程及价值函数(一)

2024-05-08 23:36

本文主要是介绍大模型微调实战之强化学习 贝尔曼方程及价值函数(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型微调实战之强化学习 贝尔曼方程及价值函数

强化学习(RL)是机器学习中一个话题,不仅在人工智能方面。它解决问题的方式与人类类似,我们每天都在学习并在生活中变得更好。

作为一名大模型学习者,当开始深入研究强化学习时,需花了一些时间来了解幕后发生的事情,因为它与传统的机器学习技术相比往往有所不同。这篇文章将帮助你了解 强化学习算法的组成部分以及如何利用它们来解决 RL 问题。

强化学习问题由代理和环境组成。代理有一组操作可供选择。代理通过选择动作与环境交互。设计的环境必须为其内采取的操作提供反馈。这种反馈可以称为奖励,奖励可以是正的,也可以是负的,具体取决于所选操作的好坏。

一个简单的强化学习问题可以如图所示表示。代理具有一组可以在环境中移动的操作。环境是一个简单的迷宫,只有一个入口和出口,奖励位于出口处。代理的目标是找到通往黄金的道路并获得奖励。然后,智能体可以从环境中过去的经验中学习,以更好地寻找黄金。

在这里插入图片描述
随着智能体从环境中积累经验和奖励,它逐渐学会根据获得的奖励贪婪地行动。这使得它能够选择在环境中产生最大奖励的最佳行动。

强化学习的组成部分

  • 奖励:奖励(R)可以表示为来自环境的标量反馈,该反馈反映了代理在给定时间步长的环境中的表现。
  • 状态:状态 (S) 提供有关代理在环境中的位置的信息。
  • 动作:代理可以选择的动作集 (A)。
  • 策略:它保存代理的行为。它将动作映射到状态。
  • 价值函数:它是对给定代理所处状态的未来预期奖励的预测。可以用来评价一个状态的好坏。
  • 代理:可以选择在环境中采取的操作的函数或类。它由策略和 RL 算法组成,用于从过去的经验中学习。
  • 环境:可以输入代理动作并执行问题计算以解决并返回奖励的函数或类。

有限马尔可夫决策过程

一旦你对强化学习的组成部分有了充分的理解,就可以开始学习马尔可夫决策过程(通常称为(Markov Decision Process, MDP) 。 MDP 是构建 RL 问题的基础构建块。

在一个环境中,所有状态S都必须遵守马尔可夫性质。如果状态S内采取的行动完全取决于当前状态S以及预期的未来状态和要获得的预期奖励,而不是过去访问的状态,则状态S被认为是马尔可夫状态。这些状态的集合称为马尔可夫过程。

在这里插入图片描述
整个过程涉及智能体遍历不同的状态,环境的所有状态都遵循马尔可夫性质。这个过程称为马尔可夫决策过程。有限MDP对于构建和理解近 90% 的强化学习问题具有重要意义。它可以定义如下:给定环境中状态S和动作A的有限集合,执行动作A时,环境中从状态S ( t )到S ( t +1)的每个步骤都存在特定的概率
在这里插入图片描述
马尔可夫决策过程的简单示例:

在这里插入图片描述
IT 员工生命中的一天可以表示为一个简单的 马尔可夫决策过程,具有员工访问的不同状态,每个状态的转移概率为黑色,奖励为红色。
通过例子更好地理解概念。这个简单的示例可以让你深入了解如何从日常经验中导出基本的 马尔可夫决策过程。将自己想象为一名 IT 员工,从在办公室工作开始新的一天。轮班结束后,你面临一个决定:要么去健身房,要么出去社交和聚会。一旦你在健身房完成锻炼,你就会有动力健康饮食并睡个好觉。聚会后,你可以选择吃不健康或健康的食物。可以为员工访问的所有不同情况(状态)分配概率和奖励。从这个简单的 马尔可夫决策过程 中导出一些马尔可夫过程。

在这里插入图片描述

通过考虑各种转移概率, 可以构建从“工作”状态开始到“睡眠”状态结束的特定马尔可夫过程。在这个过程中, 可以将总奖励加起来。大家就了解了员工在不同状态下如何获得奖励,以及哪些后续状态会带来更大的奖励。通过对此类奖励采取贪婪行动,员工可以学会在 马尔可夫决策过程 中获得最大奖励。

在这里插入图片描述

大模型技术分享

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

这篇关于大模型微调实战之强化学习 贝尔曼方程及价值函数(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971760

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言