数据可视化训练第一天(matplotlib直线;散点图,随机漫步)

本文主要是介绍数据可视化训练第一天(matplotlib直线;散点图,随机漫步),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本人自己的练习记录;如有错误请指正;
https://matplotlib.org/stable/gallery/lines_bars_and_markers/index.html
官方有许多例子,可以找到自己需要的图像模仿进行绘制

1.一个简单的直线例子

就如同我们学习C语言的第一个helloword时候一样;我们也了解最基本的例子;关于具体细节可以不需要第一时间了解

import matplotlib.pyplot as plt
#准备数据
x_values=list(range(0,10))
y_values=list(range(0,10))
#绘制图像
fig,ax=plt.subplots()
plt.plot(x_values,y_values)
plt.show()

产生的直线图像
现在;你可以任意更改x_values与y_values的值;来画出一条简单的直线。

2.将简单的直线完善一下

parts of figure
通过这张图片,我们可以了解到更多东西。现在我们试着为这幅图像设置标题,x轴名字,y轴名字等属性

import matplotlib.pyplot as plt
#准备数据
x_values=list(range(0,10))
y_values=list(range(0,10))
#绘制图像
fig,ax=plt.subplots()plt.plot(x_values,y_values,linewidth=10,c='red')
ax.set_title("example",fontsize=24)
ax.set_xlabel('x',fontsize=14)
ax.set_ylabel('y',fontsize=14)
#设置刻度的大小;axis=both表示x轴与y轴都选;大小变为14
#也可以axis='y'或者'x'
ax.tick_params(axis='both',labelsize=14)plt.show()

3.插入figure(图形)和axes的介绍

可以简单的理解figure就是一个空白的图层,创建axes就是在里面创建坐标轴

fig=plt.figure()#一个空的图形对象;没有axes
fig,ax=plt.subplots()#一个图形对象对应一个axes
fig,axs=plt.subplots(2,2)#一个图像有四个网格的axes
#创建三个axes,一个在左侧;另外两个在右侧
fig,axs=plt.subplot_mosaic([['left','right_top'],['left','right_bottom']])
#这样使用子图层
axs['left'].set_title("left")plt.show()

3绘制多条颜色不同的直线

import matplotlib.pyplot as plt
#准备数据
x_values=list(range(0,10))
y_values=list(range(0,10))
y_values1=[value**2 for value in range(0,10)]
y_values2=[value**3 for value in range(0,10)]
#绘制图像
fig,ax=plt.subplots()ax.plot(x_values,y_values,linewidth=2,c='red')
ax.set_title("example",fontsize=24)
ax.set_xlabel('x',fontsize=14)
ax.set_ylabel('y',fontsize=14)
ax.tick_params(axis='both',labelsize=14)
ax.plot(x_values,y_values1,c='blue',linewidth=2)
ax.plot(x_values,y_values2,c='yellow',linewidth=2)plt.show()

在这里插入图片描述

4绘制简单的散点图

import matplotlib.pyplot as plt
from random import randintx_values=[randint(0,10) for i in range(0,10)]
y_values=[randint(0,20) for j in range(0,10)]fig,ax=plt.subplots(figsize=(5,2.7))
ax.scatter(x_values,y_values,linewidth=2,c='red')
ax.set_title('san dian tu',fontsize=24)
ax.set_xlabel('x',fontsize=14)
ax.set_ylabel('y',fontsize=14)plt.show()

在这里插入图片描述
我的中文显示有问题;这里用拼音
使用颜色映射;根据y值,进行从浅到深的映射

ax.scatter(x_values,y_values,linewidth=2,c=y_values,cmap=plt.cm.Reds)

5随机漫步实战

抽象一个漫步类,默认步数是5000,用scatter打印出来

from random import choice
import matplotlib.pyplot as plt
import matplotlibclass RandomWalk:"""随机漫步类"""def __init__(self,num_points=5000):self.num_points=num_pointsself.x_values=[0]self.y_values=[0]def walk(self):while len(self.x_values) < self.num_points:x_direction=choice([-1,1])y_direction=choice([-1,1])x_distance=choice([0,1,2,3,4,5])y_distance=choice([0,1,2,3,4,5])x_step=x_direction*x_distancey_step=y_direction*y_distance#不允许原地踏步if x_step == 0 and y_step == 0:continuex=self.x_values[-1]+x_stepy=self.y_values[-1]+y_stepself.x_values.append(x)self.y_values.append(y)num_points=5000
walkrandom=RandomWalk(num_points)
walkrandom.walk()fig,ax=plt.subplots()
#保存各点的先后顺序
point_nums=range(walkrandom.num_points)
ax.scatter(walkrandom.x_values,walkrandom.y_values,s=3,c=point_nums,cmap=plt.cm.Blues,edgecolors='none')
ax.set_title('random walk')
ax.set_xlabel('x')
ax.set_ylabel('y')#将开始点设置的醒目一些
ax.scatter(0,0,s=20,c='red')
#结尾点同理
ax.scatter(walkrandom.x_values[-1],walkrandom.y_values[-1],s=20,c='green')#隐藏坐标轴
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)plt.show()

在这里插入图片描述

这篇关于数据可视化训练第一天(matplotlib直线;散点图,随机漫步)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971283

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者