代码随想录算法训练营第四十三天|1049. 最后一块石头的重量 II、494. 目标和、474.一和零

本文主要是介绍代码随想录算法训练营第四十三天|1049. 最后一块石头的重量 II、494. 目标和、474.一和零,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1049. 最后一块石头的重量 II

思路:

本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。

是不是感觉和昨天讲解的416. 分割等和子集 (opens new window)非常像了。

本题物品的重量为stones[i],物品的价值也为stones[i]。

对应着01背包里的物品重量weight[i]和 物品价值value[i]。

接下来进行动规五步曲

1.确定dp数组以及下标的含义

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。

可以回忆一下01背包中,dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i] ,可以 “最多可以装的价值为 dp[j]” == “最多可以背的重量为dp[j]”

2.确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

3.dp数组如何初始化

既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

当然也可以把石头遍历一遍,计算出石头总重量然后除2,得到dp数组的大小。

我这里就直接用15000了。

接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了,这样在递归公式dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);中dp[j]才不会初始值所覆盖。

4.确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中就已经说明:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历!

5.举例推导dp数组

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:

1049.最后一块石头的重量II

最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

代码:

一维DP版

class Solution:def lastStoneWeightII(self, stones: List[int]) -> int:  total_sum = sum(stones)target = total_sum // 2dp = [0] * 15001 # dp = [0] * (target + 1) 也可以for stone in stones:  # 遍历物品for j in range(target, stone - 1, -1):  # 遍历背包dp[j] = max(dp[j], dp[j - stone] + stone)return total_sum - dp[target] - dp[target]
  • 时间复杂度:O(m × n) , m是石头总重量(准确的说是总重量的一半),n为石头块数
  • 空间复杂度:O(m)

494. 目标和

思路:

建议不懂的同学自己先用二维数组来做,比较好理解,理解了之后再用一维数组。
1. 含义:dp【i】【j】:从下标为【0...i】的物品里任取,填满j这么⼤容积的包,有dp【i】【j】种⽅法
2. 递推式:dp【i】【j】 = dp【i-1】【j】 + dp【i-1】[j-nums【i】]
dp【i-1】【j】是不将物品i放入背包的方式数,dp【i-1】[j-nums【i】]是将物品i放入背包的方式数
3. 初始化:dp【0】【0】 = 1 表示装满容量为0的背包,有1种⽅法,就是装0件物品。
如果nums【0】在范围内的话,dp【0】[nums【0】] = 1
其他全为0
4. 计算顺序:顺序,行优先

5.举例推导dp数组

代码:

二维dp数组

class Solution:def findTargetSumWays(self, nums: List[int], target: int) -> int:total_sum = sum(nums)  # 计算nums的总和if abs(target) > total_sum:return 0  # 此时没有方案if (target + total_sum) % 2 == 1:return 0  # 此时没有方案target_sum = (target + total_sum) // 2  # 目标和# 创建二维动态规划数组,行表示选取的元素数量,列表示背包容积dp = [[0] * (target_sum + 1) for _ in range(len(nums))]# 初始化第一行dp[0][0] = 1for j in range(target_sum + 1):if j==nums[0]:dp[0][j]=1# 初始化第一列# 当从nums数组的索引0到i的部分有n个0时(n > 0),每个0可以取+/-,因此有2的n次方中可以取到j = 0的方案# n = 0说明当前遍历到的数组部分没有0全为正数,因此只有一种方案可以取到j = 0(就是所有数都不取)num_zeros = 0for i in range(len(nums)):  if nums[i] == 0:  num_zeros += 1  dp[i][0] = 2 ** num_zeros# 动态规划过程for i in range(1, len(nums)):for j in range(1, target_sum + 1):if j < nums[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = dp[i-1][j] + dp[i - 1][j - nums[i]]return dp[len(nums)-1][target_sum]  # 返回达到目标和的方案数
  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(n × m)

一维dp数组

class Solution:def findTargetSumWays(self, nums: List[int], target: int) -> int:total_sum = sum(nums)  # 计算nums的总和if abs(target) > total_sum:return 0  # 此时没有方案if (target + total_sum) % 2 == 1:return 0  # 此时没有方案target_sum = (target + total_sum) // 2  # 目标和dp = [0] * (target_sum + 1)  # 创建动态规划数组,初始化为0dp[0] = 1  # 当目标和为0时,只有一种方案,即什么都不选for num in nums:for j in range(target_sum, num - 1, -1):dp[j] += dp[j - num]  # 状态转移方程,累加不同选择方式的数量return dp[target_sum]  # 返回达到目标和的方案数
  • 时间复杂度:O(n × m),n为正数个数,m为背包容量
  • 空间复杂度:O(m)

474. 一和零

思路:

本题中strs 数组里的元素就是物品,每个物品都是一个!

而m 和 n相当于是一个背包,两个维度的背包

理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。

但本题其实是01背包问题!

只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

开始动规五部曲

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。(容量为i,j的背包,最多能装dp[i][j]个物品)

2.确定递推公式

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

3.dp数组如何初始化

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。(保证初始值不会影响递推公式的运算)

4.确定遍历顺序

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。

有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?

没讲究,都是物品重量的一个维度,先遍历哪个都行!

5.举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

最后dp数组的状态如下所示:

474.一和零

代码:

class Solution:def findMaxForm(self, strs: List[str], m: int, n: int) -> int:dp = [[0] * (n + 1) for _ in range(m + 1)]  # 创建二维动态规划数组,初始化为0for s in strs:  # 遍历物品zeroNum = s.count('0')  # 统计0的个数oneNum = len(s) - zeroNum  # 统计1的个数for i in range(m, zeroNum - 1, -1):  # 遍历背包容量且从后向前遍历for j in range(n, oneNum - 1, -1):dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)  # 状态转移方程return dp[m][n]
  • 时间复杂度: O(kmn),k 为strs的长度
  • 空间复杂度: O(mn)

这篇关于代码随想录算法训练营第四十三天|1049. 最后一块石头的重量 II、494. 目标和、474.一和零的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971093

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT