本文主要是介绍检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
- 什么是 RAG
LLM 会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。
正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。
一个典型的 RAG 的例子:
这里面主要包括包括三个基本步骤:
- 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。
- 检索 — 根据问题和 chunks 的相似度检索相关文档片段。
- 生成 — 以检索到的上下文为条件,生成问题的回答。
1.通义千问Qwen 1.5
<
这篇关于检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!