#####带时间衰减因子#####应用实战: 如何利用Spark集群计算物品相似度

本文主要是介绍#####带时间衰减因子#####应用实战: 如何利用Spark集群计算物品相似度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是Spark调研笔记的最后一篇,以代码实例说明如何借助Spark平台高效地实现推荐系统CF算法中的物品相似度计算。

在推荐系统中,最经典的推荐算法无疑是协同过滤(Collaborative Filtering, CF),而item-cf又是CF算法中一个实现简单且效果不错的算法。
在item-cf算法中,最关键的步骤是计算物品之间的相似度。本文以代码实例来说明如何利用Spark平台快速计算物品间的余弦相似度。
Cosine Similarity是相似度的一种常用度量,根据《推荐系统实践》一书第2.4.2节关于Item-CF算法部分的说明,其计算公式如下:

举个例子,若对item1有过行为的用户集合为{u1, u2, u3},对item2有过行为的用户集合为{u1, u3, u4, u5},则根据上面的式子,item1和item2间的相似度为2/(3*4),其中分子的2是因为item1的user_list与item2的user_list的交集长度为2,即item1和item2的共现(co-occurence)次数是2。

在工程实现上,根据论文"Empirical Analysis of Predictive Algorithms for Collaborative Filtering"的分析,为对活跃用户做惩罚,引入了IUF (Inverse User Frequency)的概念(与TF-IDF算法引入IDF的思路类似:活跃用户对物品相似度的贡献应该小于不活跃的用户),因此,对余弦相似度做改进后相似度计算公式如下:

可以看到,上式分子部分的1/log(1 + N(u))体现了对活跃用户的惩罚。

此外,通常认为用户在相隔很短的时间内喜欢的物品具有更高相似度。因此,工程实现上,还会考虑时间衰减效应。一种典型的时间衰减函数如下所示:

最终,时间上下文相关的Item-CF算法中的相似度计算公式如下:

上式中,分母部分与标准的相似度公式分母保持一致;分子部分参与运算的是item_i和item_j的共现用户集合,其中,f(t)是时间衰减效应的体现,N(u)对活跃用户做了惩罚。

下面的Python代码是计算物品相似度的Spark任务的代码片段(从HDFS加载用户历史行为日志,计算物品相似度,相似列表取TopN,将相似度计算结果写会HDFS),供大家参考:

[python]  view plain  copy
  1. #!/bin/env/python  
  2.   
  3.   
  4. import pyspark as ps  
  5. import math  
  6. import datetime as dt  
  7. import util  
  8.   
  9.   
  10. def generate_item_pair(x):  
  11.     """ 
  12.         Find co-occurence items of every given user  
  13.         Return a tuple in the format of ((item_0, item_1), cooccurrence_factor). 
  14.     """  
  15.     items = x[1]  
  16.     item_cnt = len(items)  
  17.     alpha = 1  
  18.     for i in items:  
  19.         item1 = i[0]  
  20.         ts1   = i[1]  
  21.         for j in items:  
  22.             item2 = j[0]  
  23.             ts2   = j[1]  
  24.             if item1 != item2:  
  25.                 ## introduce time decay and penalize active users  
  26.                 ft = 1.0 / (1 + alpha * abs(ts1 - ts2))  
  27.                 yield ((item1, item2), (ft / math.log(1 + item_cnt)))  
  28.   
  29.   
  30. def compute_item_similarity(x):  
  31.     items = x[0]  
  32.     cooccurrence = float(x[1])  
  33.     item_dict = g_item_freq_d   
  34.     norm_factor = 5  
  35.     if items[0in item_dict and items[1in item_dict:  
  36.         freq_0 = item_dict[items[0]]  
  37.         freq_1 = item_dict[items[1]]  
  38.         ## calculate similarity between the item pair  
  39.         sim = cooccurrence / math.sqrt(freq_0 * freq_1)  
  40.         ## normalize similarity  
  41.         norm_sim = (cooccurrence / (cooccurrence + norm_factor)) * sim  
  42.         yield (items[0], (items[1], norm_sim))  
  43.   
  44.   
  45. def sort_items(x):  
  46.     """ 
  47.         For a given item, sort all items similar to it as descent (using similarity scores), take topN similar items, and return as the following format: 
  48.         given_item \t sorted_item_0$sorted_score_0,sorted_item_1$sorted_score_1,... 
  49.     """  
  50.     similar_items = list(x[1])  
  51.     if len(similar_items) > 0:  
  52.         ## sort list of (item, score) tuple by score from high to low  
  53.         similar_items.sort(key=lambda x: x[1], reverse=True)  
  54.         ## format the list of sorted items as a string  
  55.         similar_items_str = ",".join(["$".join(map(str,item)) for item in similar_items[0:50]])  
  56.         yield "\t".join([str(x[0]), similar_items_str])  
  57.   
  58.   
  59. def main():  
  60.     base_hdfs_uri = "hdfs://to/user/behavior/log"  
  61.     today = dt.date.today()  
  62.     knn_similarity_file = '%s/%s/knn_sim' % (base_hdfs_uri, today.strftime('%Y%m%d'))  
  63.   
  64.     sc = ps.SparkContext()  
  65.   
  66.     ## load user behavior from hdfs log  
  67.     ## each element in user_item is a tuple: (user, (item, timestamp))  
  68.     history_s = (today - dt.timedelta(8)).strftime('%Y%m%d')  
  69.     history_e = (today - dt.timedelta(2)).strftime('%Y%m%d')  
  70.     input_files = util.get_input_files(action='play', start=history_s, end=history_e)  
  71.     user_item = sc.textFile(",".join(input_files))\  
  72.         .mapPartitions(util.parse_user_item) \  
  73.         .map(lambda x: (x[0], (x[1], x[2]))) \  
  74.         .distinct() \  
  75.         .cache()  
  76.   
  77.     ## compute item frequency and store as a global dict  
  78.     item_freq = user_item.map(lambda x: (x[1][0], 1)) \  
  79.         .reduceByKey(lambda x, y: x + y) \  
  80.         .collect()  
  81.     global g_item_freq_d  
  82.     g_item_freq_d = dict()  
  83.     for x in item_freq:  
  84.         g_item_freq_d[x[0]] = x[1]  
  85.      
  86.     ## compute item similarity and find top n most similar items    
  87.     item_pair_sim = user_item.groupByKey() \  
  88.         .flatMap(generate_item_pair) \  
  89.         .reduceByKey(lambda x, y: x + y) \  
  90.         .flatMap(compute_item_similarity) \  
  91.         .groupByKey() \  
  92.         .flatMap(sort_items) \  
  93.         .cache()  
  94.   
  95.     ## dump to hdfs  
  96.     item_pair_sim.repartition(1).saveAsTextFile(knn_similarity_file)  
  97.   
  98.   
  99. if __name__ == '__main__':  
  100.     main()  

上面的代码中,import util中引入的util只是负责从HDFS获取用户历史日志的文件名列表,非常简单,实现细节这里不赘述。

【参考资料】
1. wikipedia: Collaborative filtering
2. 推荐系统实践(项亮著)第2.4.2节: 基于物品的协同过滤算法
3. Paper: Empirical Analysis of Predictive Algorithms for Collaborative Filtering
4. 推荐系统实践(项亮著)第5.1.6节: 时间上下文相关的ItemCF算法
5.  Spark Programming Guide

========================== EOF ===========================

这篇关于#####带时间衰减因子#####应用实战: 如何利用Spark集群计算物品相似度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967700

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2