【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】

本文主要是介绍【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【学习AI-相关路程-工具使用-自我学习-cuda&visco-开发工具尝试-基础样例 (2)】

  • 1、前言
  • 2、环境说明
  • 3、总结说明
  • 4、工具安装
      • 0、验证cuda
      • 1、软件下载
      • 2、插件安装
  • 5、软件设置与编程练习
      • 1、创建目录
      • 2、编译软件进入目录&创建两个文件
      • 3、编写配置文件
      • 5、编写代码文件
      • 6、调试&验证
      • 7、代码解读
          • (1)包含头文件和定义CUDA内核
          • (2)主函数内的变量定义和内存分配
          • (3)初始化向量并复制到设备
          • (4)内核调用
          • (5)检查错误和回复结果
          • (6)验证结果
          • (7)清理内存
  • 6、代码链接
  • 7、细节部分
      • 1、问题1:一个错误
      • 2、问题:使用命令nvidia-smi,无法调出如下信息。
      • 3、Tasks:configure tasks,自动创建tasks.json
  • 8、总结

1、前言

我们之前安装了cuda,但是我们其实是无法直接使用cuda的,还需要编译器,类似前端,供我们输入代码,好让我们可以将思想延伸。

同时也本篇,也是续写上一篇,我们将在本篇安装开发工具,来写一个简单dome,调用cuda平台相关套件,相当hello world。

前文链接:【学习AI-相关路程-工具使用-自我学习-NVIDIA-cuda-工具安装 (1)】

2、环境说明

这里准备安装Visual Studio code 这个工具,可以看到,只用这个工具是支持不同系统的,visual studio,只是支持win下。

下载链接:https://visualstudio.microsoft.com/zh-hans/

在这里插入图片描述

当然如果使用运行cuda,还可以使用Python 语言,是使用另一个工具,目前自己刚学到这里,以后要是学了再写文章。

3、总结说明

(1)了解Visual Studio code
一般来说,想编写程序的话,或多或少,都会了解到这个工具,即使没用过,也会听过。更多的可以看文档。
链接文档:https://code.visualstudio.com/docs
在这里插入图片描述
如果因为不太好,可以选择一些翻译工具。

(2)装插件和cuda
安装好了编译工具后,就是安装插件工具,因为Visual Studio code本身支持很多,不是一起全部安装的,需要根据自己需求灵活选。

(3)练习代码
最后就是练习一下代码,调用对库,在编译好的软件,运行过程中,就是在使用GPU了。我们通过这个简单样例,来熟悉一下一些库。

4、工具安装

0、验证cuda

使用其他工具前,先要验证下,自己是否已经支持了cuda,或者说是否已经安装了cuda。

nvcc -V
或者
nvcc --version

一般来说安装好后,会出现如下信息。
在这里插入图片描述

1、软件下载

如下链接,选择一个自己合适的版本。

下载链接:https://visualstudio.microsoft.com/zh-hans/#vscode-section

在这里插入图片描述
安装命令:

sudo dpkg -i code_1.89.0-1714530869_amd64.deb

2、插件安装

如下图,我这里编写c/c++语言和cuda,一搜基本就会出来。
在这里插入图片描述

如下是我自己的选择的插件
在这里插入图片描述

5、软件设置与编程练习

1、创建目录

我们先在桌面创建一个文件夹,自己自己定就好,不必和我一致。

在这里插入图片描述

2、编译软件进入目录&创建两个文件

我们用Visual Studio code软件进入对应目录,然后创建两个文件。之后就是准备编写内容了。
在这里插入图片描述

3、编写配置文件

配置文件,顾名思义,就是告诉编译器,去哪里找工具,使用什么工具编译等等配置信息的文件。

{"version": "2.0.0","tasks": [{"label": "Build CUDA project","type": "shell","command": "/usr/local/cuda/bin/nvcc","args": ["-arch=sm_35", // 根据你的GPU架构适当修改"${file}","-o","${fileDirname}/${fileBasenameNoExtension}.out"],"group": {"kind": "build","isDefault": true},"problemMatcher": "$gcc"}]
}

如下为截图。
在这里插入图片描述

5、编写代码文件

代码文件,就是我们实际要编写代码的文件,也是我们想法延伸。

#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectors// Allocate memory on hosth_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));// Initialize host vectorsfor (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}// Allocate memory on devicecudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));// Copy host vectors to devicecudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);// Kernel launchint threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);// Check for any errors launching the kernelcudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy result back to hostcudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);// Check for any errors after the kernel launcherr = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to copy vector C from device after kernel execution (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Verify resultsbool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}// Free memoryfree(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);return 0;
}

以下为截图
在这里插入图片描述

6、调试&验证

自己在调试

(1)调试
在这里插入图片描述

(2)成功
在这里插入图片描述

7、代码解读

本代码是在网上找到一个样例,是一个使用CUDA进行向量加法的简单例子。

简单理解下,以后看多了大概就明白了。

(1)包含头文件和定义CUDA内核
#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}
(2)主函数内的变量定义和内存分配
int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectorsh_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));cudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));
(3)初始化向量并复制到设备
    for (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);
(4)内核调用
    int threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
(5)检查错误和回复结果
    cudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}cudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);
(6)验证结果
    bool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}
(7)清理内存
    free(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);

6、代码链接

代码链接:https://download.csdn.net/download/qq_22146161/89273073

7、细节部分

1、问题1:一个错误

具体什么错误有点记不清了,这里记录下吧。
在这里插入图片描述

2、问题:使用命令nvidia-smi,无法调出如下信息。

在这里插入图片描述
如上图,自己在安装过程中,突然发现nvidia-smi命令,因为一直安装各种东西,应该是影响到了,不反馈信息,后重启解决了

3、Tasks:configure tasks,自动创建tasks.json

稍微有点时间,不过我没记错的话,使用 查看>>命令面板,可以直接创建这个tasks.json文件。
在这里插入图片描述
如下步骤

在这里插入图片描述
在这里插入图片描述

8、总结

很多时候,其实是无法理解每一步,只有常看,才能大致记住,更多调试,后续也会慢慢学习。

这篇关于【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966204

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没