【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】

本文主要是介绍【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【学习AI-相关路程-工具使用-自我学习-cuda&visco-开发工具尝试-基础样例 (2)】

  • 1、前言
  • 2、环境说明
  • 3、总结说明
  • 4、工具安装
      • 0、验证cuda
      • 1、软件下载
      • 2、插件安装
  • 5、软件设置与编程练习
      • 1、创建目录
      • 2、编译软件进入目录&创建两个文件
      • 3、编写配置文件
      • 5、编写代码文件
      • 6、调试&验证
      • 7、代码解读
          • (1)包含头文件和定义CUDA内核
          • (2)主函数内的变量定义和内存分配
          • (3)初始化向量并复制到设备
          • (4)内核调用
          • (5)检查错误和回复结果
          • (6)验证结果
          • (7)清理内存
  • 6、代码链接
  • 7、细节部分
      • 1、问题1:一个错误
      • 2、问题:使用命令nvidia-smi,无法调出如下信息。
      • 3、Tasks:configure tasks,自动创建tasks.json
  • 8、总结

1、前言

我们之前安装了cuda,但是我们其实是无法直接使用cuda的,还需要编译器,类似前端,供我们输入代码,好让我们可以将思想延伸。

同时也本篇,也是续写上一篇,我们将在本篇安装开发工具,来写一个简单dome,调用cuda平台相关套件,相当hello world。

前文链接:【学习AI-相关路程-工具使用-自我学习-NVIDIA-cuda-工具安装 (1)】

2、环境说明

这里准备安装Visual Studio code 这个工具,可以看到,只用这个工具是支持不同系统的,visual studio,只是支持win下。

下载链接:https://visualstudio.microsoft.com/zh-hans/

在这里插入图片描述

当然如果使用运行cuda,还可以使用Python 语言,是使用另一个工具,目前自己刚学到这里,以后要是学了再写文章。

3、总结说明

(1)了解Visual Studio code
一般来说,想编写程序的话,或多或少,都会了解到这个工具,即使没用过,也会听过。更多的可以看文档。
链接文档:https://code.visualstudio.com/docs
在这里插入图片描述
如果因为不太好,可以选择一些翻译工具。

(2)装插件和cuda
安装好了编译工具后,就是安装插件工具,因为Visual Studio code本身支持很多,不是一起全部安装的,需要根据自己需求灵活选。

(3)练习代码
最后就是练习一下代码,调用对库,在编译好的软件,运行过程中,就是在使用GPU了。我们通过这个简单样例,来熟悉一下一些库。

4、工具安装

0、验证cuda

使用其他工具前,先要验证下,自己是否已经支持了cuda,或者说是否已经安装了cuda。

nvcc -V
或者
nvcc --version

一般来说安装好后,会出现如下信息。
在这里插入图片描述

1、软件下载

如下链接,选择一个自己合适的版本。

下载链接:https://visualstudio.microsoft.com/zh-hans/#vscode-section

在这里插入图片描述
安装命令:

sudo dpkg -i code_1.89.0-1714530869_amd64.deb

2、插件安装

如下图,我这里编写c/c++语言和cuda,一搜基本就会出来。
在这里插入图片描述

如下是我自己的选择的插件
在这里插入图片描述

5、软件设置与编程练习

1、创建目录

我们先在桌面创建一个文件夹,自己自己定就好,不必和我一致。

在这里插入图片描述

2、编译软件进入目录&创建两个文件

我们用Visual Studio code软件进入对应目录,然后创建两个文件。之后就是准备编写内容了。
在这里插入图片描述

3、编写配置文件

配置文件,顾名思义,就是告诉编译器,去哪里找工具,使用什么工具编译等等配置信息的文件。

{"version": "2.0.0","tasks": [{"label": "Build CUDA project","type": "shell","command": "/usr/local/cuda/bin/nvcc","args": ["-arch=sm_35", // 根据你的GPU架构适当修改"${file}","-o","${fileDirname}/${fileBasenameNoExtension}.out"],"group": {"kind": "build","isDefault": true},"problemMatcher": "$gcc"}]
}

如下为截图。
在这里插入图片描述

5、编写代码文件

代码文件,就是我们实际要编写代码的文件,也是我们想法延伸。

#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectors// Allocate memory on hosth_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));// Initialize host vectorsfor (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}// Allocate memory on devicecudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));// Copy host vectors to devicecudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);// Kernel launchint threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);// Check for any errors launching the kernelcudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy result back to hostcudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);// Check for any errors after the kernel launcherr = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to copy vector C from device after kernel execution (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Verify resultsbool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}// Free memoryfree(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);return 0;
}

以下为截图
在这里插入图片描述

6、调试&验证

自己在调试

(1)调试
在这里插入图片描述

(2)成功
在这里插入图片描述

7、代码解读

本代码是在网上找到一个样例,是一个使用CUDA进行向量加法的简单例子。

简单理解下,以后看多了大概就明白了。

(1)包含头文件和定义CUDA内核
#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}
(2)主函数内的变量定义和内存分配
int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectorsh_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));cudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));
(3)初始化向量并复制到设备
    for (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);
(4)内核调用
    int threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
(5)检查错误和回复结果
    cudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}cudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);
(6)验证结果
    bool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}
(7)清理内存
    free(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);

6、代码链接

代码链接:https://download.csdn.net/download/qq_22146161/89273073

7、细节部分

1、问题1:一个错误

具体什么错误有点记不清了,这里记录下吧。
在这里插入图片描述

2、问题:使用命令nvidia-smi,无法调出如下信息。

在这里插入图片描述
如上图,自己在安装过程中,突然发现nvidia-smi命令,因为一直安装各种东西,应该是影响到了,不反馈信息,后重启解决了

3、Tasks:configure tasks,自动创建tasks.json

稍微有点时间,不过我没记错的话,使用 查看>>命令面板,可以直接创建这个tasks.json文件。
在这里插入图片描述
如下步骤

在这里插入图片描述
在这里插入图片描述

8、总结

很多时候,其实是无法理解每一步,只有常看,才能大致记住,更多调试,后续也会慢慢学习。

这篇关于【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966204

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学