多器官和多模态图像的通用异常检测模型-不受特定模型约束

2024-05-05 17:28

本文主要是介绍多器官和多模态图像的通用异常检测模型-不受特定模型约束,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • A Model-Agnostic Framework for Universal Anomaly Detection of Multi-organ and Multi-modal Images
    • 摘要
    • 方法
    • 实验结果

A Model-Agnostic Framework for Universal Anomaly Detection of Multi-organ and Multi-modal Images

摘要

  1. 背景与挑战:深度学习在医学图像分析中取得了巨大成功,但手动标记症状性医学图像费时费力。相比之下,获取无症状健康受试者的正常图像更容易。先前的工作通常为每个器官和模态单独设计网络,忽略了医学图像之间的固有相似性。

  2. 提出的解决方案:本文提出了一种模型无关的框架,可以使用单个网络进行各种器官和模态的异常检测。通过对潜在表示施加器官和模态分类约束以及中心约束,提高了网络的泛化能力和性能。

  3. 关键贡献:该框架不仅提高了网络对各种器官和模态的异常检测的泛化能力,还改善了单个器官和模态的性能。通过在三个公共数据集上进行大量实验,证明了该框架的优越性和每个组件的有效性。

  4. 实验结果:使用四种不同的基线模型进行实验,结果表明提出的框架在各个方面都表现出明显的优势,有效应对了医学图像分析中的挑战。

  5. 结论与展望:本文的工作为医学图像异常检测提供了一种新的模型无关的解决方案,为未来深度学习在医学图像分析领域的应用提供了有益启示。
    代码地址

方法

在这里插入图片描述
图 1 展示了将提出的框架整合到 DPA 方法中的概述。除了基线模型的原始损失之外,还在解缠的潜在表示上应用了两个分类约束(器官和模态)和一个中心约束。

提出的框架是模型无关的,可以轻松地应用于大多数标准异常检测方法。采用了四种最先进的异常检测方法,即深度感知自编码器(DPA)、记忆增强自编码器(MemAE)、基于生成对抗网络的异常检测(GANomaly)和基于生成对抗网络的快速无监督异常检测(f-AnoGAN)作为基线方法

DPA 的网络由自编码器和预训练特征提取器组成。通过自编码器,图像被编码为潜在表示,然后重构为原始图像空间。他们采用相对感知损失作为自编码器的目标函数,并用于优化自编码器和衡量异常。他们进一步通过在编码的潜在表示上增加额外约束来充分利用各种器官和模态的正常图像中的潜在模式。具体来说,他们的 MADDR 方法鼓励模型将输入图像转换为潜在表示,其中包含解耦的类别和个性信息。通过对编码的潜在表示施加分类和中心约束,他们的方法可以更好地捕获正常图像的潜在分布,并用于异常检测。他们在四种最先进的异常检测方法上评估了提出的模型无关框架,结果表明该框架在多器官和多模态图像的异常检测任务中具有优越性。

实验结果

在这里插入图片描述
在这里插入图片描述

这篇关于多器官和多模态图像的通用异常检测模型-不受特定模型约束的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962248

相关文章

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI