多器官和多模态图像的通用异常检测模型-不受特定模型约束

2024-05-05 17:28

本文主要是介绍多器官和多模态图像的通用异常检测模型-不受特定模型约束,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • A Model-Agnostic Framework for Universal Anomaly Detection of Multi-organ and Multi-modal Images
    • 摘要
    • 方法
    • 实验结果

A Model-Agnostic Framework for Universal Anomaly Detection of Multi-organ and Multi-modal Images

摘要

  1. 背景与挑战:深度学习在医学图像分析中取得了巨大成功,但手动标记症状性医学图像费时费力。相比之下,获取无症状健康受试者的正常图像更容易。先前的工作通常为每个器官和模态单独设计网络,忽略了医学图像之间的固有相似性。

  2. 提出的解决方案:本文提出了一种模型无关的框架,可以使用单个网络进行各种器官和模态的异常检测。通过对潜在表示施加器官和模态分类约束以及中心约束,提高了网络的泛化能力和性能。

  3. 关键贡献:该框架不仅提高了网络对各种器官和模态的异常检测的泛化能力,还改善了单个器官和模态的性能。通过在三个公共数据集上进行大量实验,证明了该框架的优越性和每个组件的有效性。

  4. 实验结果:使用四种不同的基线模型进行实验,结果表明提出的框架在各个方面都表现出明显的优势,有效应对了医学图像分析中的挑战。

  5. 结论与展望:本文的工作为医学图像异常检测提供了一种新的模型无关的解决方案,为未来深度学习在医学图像分析领域的应用提供了有益启示。
    代码地址

方法

在这里插入图片描述
图 1 展示了将提出的框架整合到 DPA 方法中的概述。除了基线模型的原始损失之外,还在解缠的潜在表示上应用了两个分类约束(器官和模态)和一个中心约束。

提出的框架是模型无关的,可以轻松地应用于大多数标准异常检测方法。采用了四种最先进的异常检测方法,即深度感知自编码器(DPA)、记忆增强自编码器(MemAE)、基于生成对抗网络的异常检测(GANomaly)和基于生成对抗网络的快速无监督异常检测(f-AnoGAN)作为基线方法

DPA 的网络由自编码器和预训练特征提取器组成。通过自编码器,图像被编码为潜在表示,然后重构为原始图像空间。他们采用相对感知损失作为自编码器的目标函数,并用于优化自编码器和衡量异常。他们进一步通过在编码的潜在表示上增加额外约束来充分利用各种器官和模态的正常图像中的潜在模式。具体来说,他们的 MADDR 方法鼓励模型将输入图像转换为潜在表示,其中包含解耦的类别和个性信息。通过对编码的潜在表示施加分类和中心约束,他们的方法可以更好地捕获正常图像的潜在分布,并用于异常检测。他们在四种最先进的异常检测方法上评估了提出的模型无关框架,结果表明该框架在多器官和多模态图像的异常检测任务中具有优越性。

实验结果

在这里插入图片描述
在这里插入图片描述

这篇关于多器官和多模态图像的通用异常检测模型-不受特定模型约束的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/962248

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间