Meta Llama 3 使用 Hugging Face 和 PyTorch 优化 CPU 推理

2024-05-05 15:04

本文主要是介绍Meta Llama 3 使用 Hugging Face 和 PyTorch 优化 CPU 推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:meta-llama-3-optimized-cpu-inference-with-hugging-face-and-pytorch

了解在 CPU 上部署 Meta* Llama 3 时如何减少模型延迟

2024 年 4 月 19 日

万众期待的 Meta 第三代 Llama 发布了,我想确保你知道如何以最佳方式部署这个最先进的(SoTA)LLM。在本文中,我们将重点讨论如何执行只权重量化(WOQ)来压缩 8B 参数模型并改善推理延迟,但首先,让我们讨论一下 Meta Llama 3。

Llama 3

迄今为止,Llama 3 系列包括 8B 到 70B 参数的模型,未来还会有更多版本。这些模型都附带有允许使用的 Meta Llama 3 许可证,请在接受使用这些模型所需的条款之前仔细阅读。这标志着 Llama 模型系列和开源人工智能进入了激动人心的新篇章。

结构

Llama 3 是一种基于纯解码器transformer的自动回归 LLM。与 Llama 2 相比,Meta 团队做出了以下显著改进:

  • 采用分组查询关注 (GQA),提高了推理效率。
  • 优化了标记符号生成器,其词汇量为 128K 标记,旨在更高效地编码语言。
  • 在 15 万亿个 token 数据集上进行了训练,比 Llama 2 的训练数据集大 7 倍,包含的代码多 4 倍。

下图是 print(model) 的结果,其中 model 为 meta-llama/Meta-Llama-3-8B-Instruct。从图中我们可以看到,该模型由 32 个 LlamaDecoderLayers 组成,这些 LlamaDecoderLayers 由 Llama Attention 自我注意组件构成。此外,它还有 LlamaMLP、LlamaRMSNorm 和一个线性头。

29

语言建模性能

该模型在各种行业标准语言建模基准(如 MMLU、GPQA、HumanEval、GSM-8K、MATH 等)上进行了评估。在本文中,我们将回顾 "指令调整模型 "的性能。这些数据中最引人注目的是 Llama 3 8B 参数模型在所报告的基准测试中的性能比 Llama 2 70B 高出 62% 到 143%,而模型体积却小了 88%!

30

最新一代 Llama 提升了语言建模性能、许可权限和架构效率,标志着生成式人工智能领域翻开了激动人心的篇章。让我们来探讨如何优化 CPU 上的推理,以实现 Llama 3 的可扩展、低延迟部署。

使用 PyTorch 优化 Llama 3 推断

在本文中,我们将重点介绍如何在 meta-llama/Meta-Llama-3-8B-Instruct 中应用仅权重量化(WOQ)。WOQ 在性能、延迟和准确性之间取得了平衡,可选择量化到 int4 或 int8。WOQ 的一个关键部分是去量化步骤,它在计算前将 int4/in8 权重转换回 bf16。

31

环境设置

在 Llama-3-8B-Instruct 上执行 WOQ 需要大约 60GB 内存。其中约 30GB 用于加载完整模型,约 30GB 用于量化期间的峰值内存。WOQ Llama 3 只消耗约 10GB 内存,这意味着我们可以通过从内存中释放完整模型来释放约 50GB 内存。

如果在自己的集成开发环境中运行,你可能需要解决其他依赖性问题,如安装 Jupyter 和/或配置 conda/python 环境。在开始之前,请确保已安装以下依赖项。

intel-extension-for-pytorch==2.2
transformers==4.35.2
torch==2.2.0
huggingface_hub

访问和配置 Llama 3

访问 Llama 3 的模型和令牌生成器需要一个 Hugging Face* 账户。

为此,请从设置菜单中选择 "访问令牌"(图 4)并创建一个令牌。

32

运行以下代码后,复制访问令牌并将其粘贴到 Jupyter 单元格中生成的 "令牌 "字段。

from huggingface_hub import notebook_login, Repository
# Login to Hugging Face
notebook_login()

使用 WOQ 量化 Llama-3-8B-Instruct

我们将利用 PyTorch 的英特尔® 扩展* 将 WOQ 应用于 Llama 3。该扩展包含针对英特尔硬件的最新 PyTorch 优化。请按照以下步骤对 Llama 3 模型进行量化并执行推理:

1. Llama 3 模型和标记器: 导入所需的软件包,并使用 AutoModelForCausalLM.from_pretrained() 和 AutoTokenizer.from_pretrained() 方法加载 Llama-3-8B-Instruct 特定的权重和标记符。

import torch
import intel_extension_for_pytorch as ipex
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
Model = 'meta-llama/Meta-Llama-3-8B-Instruct'
model = AutoModelForCausalLM.from_pretrained(Model)
tokenizer = AutoTokenizer.from_pretrained(Model)

2. 量化配方配置(Quantization Recipe Config): 配置 WOQ 量化配方。我们可以将 weight_dtype 变量设置为所需的内存数据类型,分别从 torch.quint4x2 或 torch.qint8 中选择 int4 和 in8。此外,我们还可以使用 lowp_model 来定义去量化精度。目前,我们将保持 ipex.quantization.WoqLowpMode.None 作为默认的 bf16 计算精度。

qconfig = ipex.quantization.get_weight_only_quant_qconfig_mapping(weight_dtype=torch.quint4x2, # or torch.qint8lowp_mode=ipex.quantization.WoqLowpMode.NONE, # or FP16, BF16, INT8
)
checkpoint = None # optionally load int4 or int8 checkpoint
# PART 3: Model optimization and quantization
model_ipex = ipex.llm.optimize(model, quantization_config=qconfig, low_precision_checkpoint=checkpoint)
del model 

我们使用 ipex.llm.optimize() 应用 WOQ,然后使用 del model 从内存中删除完整模型,释放出 ~30GB 内存。

3. 提示 Llama 3:与 LLama 2 一样,Llama 3 也为其指令调整模型预设了提示模板。使用该模板,开发人员可以定义特定的模型行为指令,并提供用户提示和对话历史记录。

system= """\n\n You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. If you don't know the answer to a question, please don't share false information."""
user= "\n\n You are an expert in astronomy. Can you tell me 5 fun facts about the universe?"
model_answer_1 = 'None'
llama_prompt_tempate = f"""
<|begin_of_text|>\n<|start_header_id|>system<|end_header_id|>{system}
<|eot_id|>\n<|start_header_id|>user<|end_header_id|>{user}
<|eot_id|>\n<|start_header_id|>assistant<|end_header_id|>{model_answer_1}<|eot_id|>
"""
inputs = tokenizer(llama_prompt_tempate, return_tensors="pt").input_ids

我们提供所需的字段,然后使用标记器将整个模板转换成模型的标记。

4. Llama 3 推论: 在文本生成方面,我们利用 TextStreamer 生成实时推理流,而不是一次性打印整个输出。这将为读者带来更自然的文本生成体验。我们为 model_ipex.generate() 和其他文本生成参数提供了配置好的流。

with torch.inference_mode():tokens = model_ipex.generate(inputs,streamer=streamer,pad_token_id=128001,eos_token_id=128001,max_new_tokens=300,repetition_penalty=1.5,
)

运行此代码后,模型将开始生成输出。请记住,这些都是未经过滤的非保护输出。对于真实世界的使用案例,你将需要进行额外的后处理考虑。

33

就是这样。只需不到 20 行代码,你就能在生态系统中拥有最新 SoTA LLM 的低延迟 CPU 优化版本。

总结

与前几代产品相比,Meta 的 Llama 3 LLM 系列有了显著的改进,并提供了多种配置(更多配置即将推出)。在本文中,我们探讨了利用仅权重量化(WOQ)增强 CPU 推理能力的问题,这种技术可以减少延迟,同时对准确性的影响最小。

通过将新一代面向性能的 Llama 3 LLM 与 WOQ 等优化技术相结合,开发人员可以为 GenAI 应用开启新的可能性。这种组合简化了硬件要求,使集成到新系统和现有系统中的 LLM 能够实现高保真、低延迟的结果。

这篇关于Meta Llama 3 使用 Hugging Face 和 PyTorch 优化 CPU 推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961986

相关文章

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求