代码随想录算法训练营DAY54|C++动态规划Part15|647.回文子串、516最长回文子序列、

本文主要是介绍代码随想录算法训练营DAY54|C++动态规划Part15|647.回文子串、516最长回文子序列、,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 647.回文子串
    • 思路
    • CPP代码
    • 双指针
  • 516最长回文子序列
    • 思路
    • CPP代码
  • 动态规划总结篇

647.回文子串

力扣题目链接

文章链接:647.回文子串

视频链接:动态规划,字符串性质决定了DP数组的定义 | LeetCode:647.回文子串

其实子串问题和子序列问题非常类似,也是存在最优子结构,那就意味着原问题的最优解可以由子问题的最优解推导出来。

其实回文的问题很容易联想到双指针。不过为了后续能够解决516.最长回文子序列问题,我们还是先使用动规解决一下该问题,为后面打基础。

思路

  • 确定dp数组以及下标含义

我们回文子串的问题并不能像解决子序列问题那样去设置dp数组。

如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系,因为根本就无法跟相邻数组元素有什么关系。联想到使用双指针解决回文子串,我们的dp数组设置是不是也能参考设计呢

最好的解决方法设置:布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  • 确定递推公式

两种情况:s[i]与s[j]相等,s[i]与s[j]不相等,其中相等时又分为三种情况

如果不相等,那dp[i][j]=false

如果相等:

  1. 下标i 与 j相同,同一个字符例如a,当然是回文子串
  2. 下标i 与 j相差为1,例如aa,也是回文子串
  3. 下标:ij相差大于1的时候,例如cabac此时s[i]s[j]已经相同了,我们看ij区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true

综上所述:

if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}
}
  • 如何初始化

全是设置为false

  • 确定遍历顺序

二维的递推顺序最好就是根据递推公式画一个格子:

![在这里插入图片描述](

20210121171032473-20230310132134822

我们需要首先知道左下角的格子,才能推导出我们的dp,

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

  • 推导dp数组

输入:“aaa”,dp[i][j]状态如下:

图片中有6个true,所以就有六个回文子串

CPP代码

//完整代码
class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}}return result;}
};//简洁版代码
class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {for (int j = i; j < s.size(); j++) {if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {result++;dp[i][j] = true;}}}return result;}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

双指针

回文必须还得是双指针

class Solution {
public:int countSubstrings(string s) {int count = 0;for (int i = 0; i < s.length(); ++i) {count += countPalindrome(s, i, i); // 以 s[i] 为中心的回文子串数量count += countPalindrome(s, i, i + 1); // 以 s[i] 和 s[i+1] 为中心的回文子串数量}return count;}private:int countPalindrome(const string& s, int left, int right) {int count = 0;while (left >= 0 && right < s.length() && s[left] == s[right]) {++count;--left;++right;}return count;}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

516最长回文子序列

力扣题目链接

文章链接:516最长回文子序列

视频链接:动态规划再显神通,LeetCode:516.最长回文子序列

对于这个问题,使用双指针并不是最有效的方法。因为最长回文子序列不要求是连续的字符,而是可以跳过某些字符形成回文。本题中,回文子序列与回文子串是有区别的。

思路

  • 确定dp数组以及下标的含义

dp[i][j]:字符串s[i, j]范围内最长的回文子序列的长度为dp[i][j]

  • 确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

具体如图所示:

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列

加入s[j]的回文子序列长度为dp[i + 1][j]

加入s[i]的回文子序列长度为dp[i][j - 1]

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;
} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
  • dp数组如何初始化

从递推公式可以看出,递推公式计算不到i 和j相同时候的情况。

当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他都应该初始化成0,这样题对公式dp[i][j]=max(dp[i + 1][j], dp[i][j - 1]);才不会被初始值覆盖

vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
  • 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1]dp[i + 1][j]dp[i][j - 1],如图:

所以当我们遍历i的时候是从上到下,然后j是从左到右

for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {...}
}
  • 举例推导dp数组

输入s:“cbbd” 为例,dp数组状态如图:

20210127151521432

红色框即:dp[0][s.size() - 1]; 为最终结果。

CPP代码

class Solution {
public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));for (int i = 0; i < s.size(); i++) dp[i][i] = 1;for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}}return dp[0][s.size() - 1];}
};

动态规划总结篇

二刷回来整总结!

这篇关于代码随想录算法训练营DAY54|C++动态规划Part15|647.回文子串、516最长回文子序列、的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961954

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各