代码随想录算法训练营DAY54|C++动态规划Part15|647.回文子串、516最长回文子序列、

本文主要是介绍代码随想录算法训练营DAY54|C++动态规划Part15|647.回文子串、516最长回文子序列、,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 647.回文子串
    • 思路
    • CPP代码
    • 双指针
  • 516最长回文子序列
    • 思路
    • CPP代码
  • 动态规划总结篇

647.回文子串

力扣题目链接

文章链接:647.回文子串

视频链接:动态规划,字符串性质决定了DP数组的定义 | LeetCode:647.回文子串

其实子串问题和子序列问题非常类似,也是存在最优子结构,那就意味着原问题的最优解可以由子问题的最优解推导出来。

其实回文的问题很容易联想到双指针。不过为了后续能够解决516.最长回文子序列问题,我们还是先使用动规解决一下该问题,为后面打基础。

思路

  • 确定dp数组以及下标含义

我们回文子串的问题并不能像解决子序列问题那样去设置dp数组。

如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系,因为根本就无法跟相邻数组元素有什么关系。联想到使用双指针解决回文子串,我们的dp数组设置是不是也能参考设计呢

最好的解决方法设置:布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  • 确定递推公式

两种情况:s[i]与s[j]相等,s[i]与s[j]不相等,其中相等时又分为三种情况

如果不相等,那dp[i][j]=false

如果相等:

  1. 下标i 与 j相同,同一个字符例如a,当然是回文子串
  2. 下标i 与 j相差为1,例如aa,也是回文子串
  3. 下标:ij相差大于1的时候,例如cabac此时s[i]s[j]已经相同了,我们看ij区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true

综上所述:

if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}
}
  • 如何初始化

全是设置为false

  • 确定遍历顺序

二维的递推顺序最好就是根据递推公式画一个格子:

![在这里插入图片描述](

20210121171032473-20230310132134822

我们需要首先知道左下角的格子,才能推导出我们的dp,

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

  • 推导dp数组

输入:“aaa”,dp[i][j]状态如下:

图片中有6个true,所以就有六个回文子串

CPP代码

//完整代码
class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}}return result;}
};//简洁版代码
class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {for (int j = i; j < s.size(); j++) {if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {result++;dp[i][j] = true;}}}return result;}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

双指针

回文必须还得是双指针

class Solution {
public:int countSubstrings(string s) {int count = 0;for (int i = 0; i < s.length(); ++i) {count += countPalindrome(s, i, i); // 以 s[i] 为中心的回文子串数量count += countPalindrome(s, i, i + 1); // 以 s[i] 和 s[i+1] 为中心的回文子串数量}return count;}private:int countPalindrome(const string& s, int left, int right) {int count = 0;while (left >= 0 && right < s.length() && s[left] == s[right]) {++count;--left;++right;}return count;}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

516最长回文子序列

力扣题目链接

文章链接:516最长回文子序列

视频链接:动态规划再显神通,LeetCode:516.最长回文子序列

对于这个问题,使用双指针并不是最有效的方法。因为最长回文子序列不要求是连续的字符,而是可以跳过某些字符形成回文。本题中,回文子序列与回文子串是有区别的。

思路

  • 确定dp数组以及下标的含义

dp[i][j]:字符串s[i, j]范围内最长的回文子序列的长度为dp[i][j]

  • 确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

具体如图所示:

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列

加入s[j]的回文子序列长度为dp[i + 1][j]

加入s[i]的回文子序列长度为dp[i][j - 1]

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;
} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
  • dp数组如何初始化

从递推公式可以看出,递推公式计算不到i 和j相同时候的情况。

当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他都应该初始化成0,这样题对公式dp[i][j]=max(dp[i + 1][j], dp[i][j - 1]);才不会被初始值覆盖

vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
  • 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1]dp[i + 1][j]dp[i][j - 1],如图:

所以当我们遍历i的时候是从上到下,然后j是从左到右

for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {...}
}
  • 举例推导dp数组

输入s:“cbbd” 为例,dp数组状态如图:

20210127151521432

红色框即:dp[0][s.size() - 1]; 为最终结果。

CPP代码

class Solution {
public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));for (int i = 0; i < s.size(); i++) dp[i][i] = 1;for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}}return dp[0][s.size() - 1];}
};

动态规划总结篇

二刷回来整总结!

这篇关于代码随想录算法训练营DAY54|C++动态规划Part15|647.回文子串、516最长回文子序列、的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961954

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2