数据结构之AVL树---BST的变种

2024-05-04 00:48
文章标签 数据结构 avl 变种 bst

本文主要是介绍数据结构之AVL树---BST的变种,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据结构之AVL

1 .基本概念

AVL树的复杂程度真是比二叉搜索树高了整整一个数量级——它的原理并不难弄懂,但要把它用代码实现出来还真的有点费脑筋。下面我们来看看:

1.1  AVL树是什么?

AVL树本质上还是一棵二叉搜索树(因此读者可以看到我后面的代码是继承自二叉搜索树的),它的特点是:

1. 本身首先是一棵二叉搜索树。 

2. 带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1。 

例如:

     5              5

    /            / \

   2   6          2   6

  /          / \

 1   4   7      1   4

    /              /

   3              3

上图中,左边的是AVL树,而右边的不是。因为左边的树的每个结点的左右子树的高度之差的绝对值都最多为1,而右边的树由于结点6没有子树,导致根结点5的平衡因子为2。

1.2  为什么要用AVL树?

有人也许要问:为什么要有AVL树呢?它有什么作用呢?

我们先来看看二叉搜索树吧(因为AVL树本质上是一棵二叉搜索树),假设有这么一种极端的情况:二叉搜索树的结点为1、2、3、4、5,也就是:

 1

  \

   2

    \

     3

      \

       4

        \

         5

聪明的你是不是发现什么了呢?呵呵,显而易见——这棵二叉搜索树其实等同于一个链表了,也就是说,它在查找上的优势已经全无了——在这种情况下,查找一个结点的时间复杂度是O(N)!

好,那么假如是AVL树(别忘了AVL树还是二叉搜索树),则会是:

   2

  / \

 1   4

    / \

   3   5

可以看出,AVL树的查找平均时间复杂度要比二叉搜索树低——它是O(logN)。也就是说,在大量的随机数据中AVL树的表现要好得多。

1.3  旋转

假设有一个结点的平衡因子为2(在AVL树中,最大就是2,因为结点是一个一个地插入到树中的,一旦出现不平衡的状态就会立即进行调整,因此平衡因子最大不可能超过2),那么就需要进行调整。由于任意一个结点最多只有两个儿子,所以当高度不平衡时,只可能是以下四种情况造成的:

1. 对该结点的左儿子的左子树进行了一次插入。 

2. 对该结点的左儿子的右子树进行了一次插入。 

3. 对该结点的右儿子的左子树进行了一次插入。 

4. 对该结点的右儿子的右子树进行了一次插入。 

情况1和4是关于该点的镜像对称,同样,情况2和3也是一对镜像对称。因此,理论上只有两种情况,当然了,从编程的角度来看还是四种情况。

第一种情况是插入发生在“外边”的情况(即左-左的情况或右-右的情况),该情况可以通过对树的一次单旋转来完成调整。第二种情况是插入发生在“内部”的情况(即左-右的情况或右-左的情况),该情况要通过稍微复杂些的双旋转来处理。

1.31  旋转

情况1对该结点的左儿子的左子树进行了一次插入。

左边为调整前得节点,我们可以看出k2的左右子树已不再满足AVL平衡条件,调整后的为右图。

我们可以看出,解决办法是将x上移一层,并将z下移一层,由于在原树中k2 > k1,所以k2成为k1的右子树,而y是小于k2的,所以成为k2的左子树。

为了设计算法,我们这里来看一个更易理解的:插入的是节点“6

算法设计:由于是情形1对该结点的左儿子的左子树进行了一次插入,该节点是“8”,首先我们不考虑其父节点的情况,因为我们创建节点是递归创建的,可以不用考虑其父节点与其的连接,这在后面递归创建的时候会说到,由于“8”的右孩子将不会发生变化,但是其左孩子设为“7”的右孩子,将7的右孩子设为“8”及其子树,然后返回“7”节点的指针。

实现代码:

//情形

AVLTree SingleRotateWithLeft(PAVLNode k2)

{

 PAVLNode k1;

   k1 = k2->l;

     k2->l = k1->r;

     k1->r = k2;

     k2->h = MAX( Height( k2->l ), Height( k2->r ) ) + 1;

     k1->h = MAX( Height( k1->l ), k2->h ) + 1;

     return k1;  /* New root */

}

情况4:对该结点的右儿子的右子树进行了一次插入。 

左边为调整前得节点,我们可以看出k1的左右子树已不再满足AVL平衡条件,调整后的为右图。

我们可以看出,解决办法是将z上移一层,并将x下移一层,由于在原树中k2 > k1,所以k1成为k2的左子树,而y是大于k1的,所以成为k1的右子树。

为了设计算法,我们这里来看一个更易理解的:插入的是节点“6

算法设计:由于是情形1对该结点的右儿子的右子树进行了一次插入,该节点为“4”,我们同第一种情形类似。

实现代码:

//情形4

AVLTree SingleRotateWithRight(PAVLNode k1)

{

PAVLNode k2;

  k2 = k1->r;

    k1->r = k2->l;

    k2->l = k1;

    k1->h = MAX( Height( k1->l ), Height( k1->r ) ) + 1;

    k2->h = MAX( Height( k2->r ), k1->h ) + 1;

    return k2;  /* New root */

}

1.32  旋转

情况2:对该结点的左儿子的右子树进行了一次插入。 

这种情况是单旋转调整不回来的,如下图:

图(1

--右双旋转如下:

图(2

这里我们将图(1)的Y子树看成如图(2),以k2为子树根节点的树,我们将其子树分成比D,这里我我先对k3的左子树进行一次情形四的右旋转,然后在进行一次情形1的左旋转,详细步骤如下:(红色框里面的即是要进行单旋转的)

实现代码:

//情形2

AVLTree DoubleRotateWithLeft( PAVLNode k3 )

{

            /* Rotate between K1 and K2 */

            k3->l = SingleRotateWithRight( k3->l );

            /* Rotate between K3 and K2 */

            return SingleRotateWithLeft(k3);

}

情况3对该结点的右儿子的左子树进行了一次插入。

左双旋转如下:

我们先对k1的右子树进行一次左旋转(情形1,然后再对k1进行一次右旋转(情形4)。

实现代码:

//情形3

AVLTree DoubleRotateWithRight( PAVLNode k1 )

{

            /* Rotate between K3 and K2 */

            k1->r = SingleRotateWithLeft( k1->r );

            /* Rotate between K1 and K2 */

            return SingleRotateWithRight( k1 );

}

1.3  插入操作

插入的核心思路是通过递归找到合适的位置,插入新结点,然后看新结点是否平衡(平衡因子是否为2),如果不平衡的话,就分成种大情况以及两种小情况:

1. 在结点的左儿子(X < T->item) 

在左儿子的左子树 (X < T->l-> item),“外边”,要做单旋转。 

在左儿子的右子树 (X > T->l-> item),“内部”,要做双旋转。 

2. 在结点的右儿子(X > T->item) 

在右儿子的左子树(X < T->r-> item),“内部”,要做双旋转。 

在右儿子的右子树(X > T->r-> item),“外边”,要做单旋转。 

3. (X == T->item) ,对该节点的计数进行更新。

当进行了旋转之后,必定会有结点的“父结点”是需要更新的,例如:

   2

  / \

 1   4

    / \

   3   5

        \

         6

上图是调整前的,下图是调整后的:

     4

    / \

   2   5

  /   \

 1   3   6

可以看出,根结点2不平衡,是由于它的右儿子的右子树插入了新的结点6造成的。因此,这属于“外边”的情况,要进行一次单旋转。于是我们就把结点4调整上来作为根结点,再把结点2作为4的左儿子,最后把结点2的右儿子修改为原来的结点4的左儿子。

实现代码:

AVLTree Insert(Item X, AVLTree T )

 {

            if( T == NULL )

            {

                /* Create and return a one-node tree */

                T = (PAVLNode)malloc( sizeof(AVLNode ) );

                if( T == NULL )

                    perror("malloc failed");

                else

                {

                    T->item = X; 

T->h = 0;

                    T->l = T->r = NULL;

                    T->count = 1;

                }

            }

            else if(compare(&X,&T->item) == -1)//插入情况1

            {

                T->l = Insert( X, T->l );

                if( Height( T->l ) - Height( T->r ) == 2 )

                    if(compare(&X, &T->l->item ) == -1)//左边左子树 单旋转 

                        T = SingleRotateWithLeft( T );

                    else

                        T = DoubleRotateWithLeft( T );//左边右子树 

            }

            else if( compare(&X,&T->item) == 1 ) //插入情况2

            {

                T->r = Insert( X, T->r );

                if( Height( T->r ) - Height( T->l ) == 2 )

                    if(compare(&X , &T->r->item) == 1)//右边右子树 单旋转

                        T = SingleRotateWithRight( T );

                    else

                        T = DoubleRotateWithRight( T );//右边左子树 

            }

            else//插入情况3

             T->count++;

            /* Else X is in the tree already; we'll do nothing */

            T->h = MAX( Height( T->l ), Height( T->r ) ) + 1;

            return T;

}


原文转自:http://blog.chinaunix.net/uid-25324849-id-2182877.html

这篇关于数据结构之AVL树---BST的变种的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958006

相关文章

(超详细)YOLOV7改进-Soft-NMS(支持多种IoU变种选择)

1.在until/general.py文件最后加上下面代码 2.在general.py里面找到这代码,修改这两个地方 3.之后直接运行即可

【数据结构】线性表:顺序表

文章目录 1. 线性表2. 顺序表2.1 概念及结构2.2 接口实现2.3 顺序表的问题及思考 1. 线性表 线性表是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串… 线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组和链式结构的形式

数据结构9——排序

一、冒泡排序 冒泡排序(Bubble Sort),顾名思义,就是指越小的元素会经由交换慢慢“浮”到数列的顶端。 算法原理 从左到右,依次比较相邻的元素大小,更大的元素交换到右边;从第一组相邻元素比较到最后一组相邻元素,这一步结束最后一个元素必然是参与比较的元素中最大的元素;按照大的居右原则,重新从左到后比较,前一轮中得到的最后一个元素不参4与比较,得出新一轮的最大元素;按照上述规则,每一轮结

算法与数据结构面试宝典——回溯算法详解(C#,C++)

文章目录 1. 回溯算法的定义及应用场景2. 回溯算法的基本思想3. 递推关系式与回溯算法的建立4. 状态转移方法5. 边界条件与结束条件6. 算法的具体实现过程7. 回溯算法在C#,C++中的实际应用案例C#示例C++示例 8. 总结回溯算法的主要特点与应用价值 回溯算法是一种通过尝试各种可能的组合来找到所有解的算法。这种算法通常用于解决组合问题,如排列、组合、棋盘游

嵌入式学习——数据结构(哈希、排序)——day50

1. 查找二叉树、搜索二叉树、平衡二叉树 2. 哈希表——人的身份证——哈希函数 3. 哈希冲突、哈希矛盾 4. 哈希代码 4.1 创建哈希表 4.2  5. 算法设计 5.1 正确性 5.2 可读性(高内聚、低耦合) 5.3 健壮性 5.4 高效率(时间复杂度)时间复杂度越低,效率越高, 5.5 低储存(空间复杂度)空间复杂度越低,存储空间越少 6.排序算法 6.1 冒

【数据结构与算法 经典例题】使用队列实现栈(图文详解)

💓 博客主页:倔强的石头的CSDN主页               📝Gitee主页:倔强的石头的gitee主页    ⏩ 文章专栏:《数据结构与算法 经典例题》C语言                                   期待您的关注 ​​ 目录  一、问题描述 二、前置知识 三、解题思路 四、C语言实现代码 🍃队列实现代码:

数据结构:二叉树详解 c++信息学奥赛基础知识讲解

目录 一、二叉树的定义 二、二叉树的形态 三、二叉树的性质 四、二叉树的存储 五、二叉树的创建与遍历(递归) 六、二叉树实现 创建二叉树 展示二叉树 1、计算数的高度 2、计算数的叶子数量 3、计算数的宽度 4、层次遍历 5、前序遍历 递归写法 非递归写法 6、中序遍历 递归写法 非递归写法 7、后序遍历 递归写法 非递归写法 8、输出根节点到所有叶

Java数据结构4-链表

1. ArrayList的缺陷 由于其底层是一段连续空间,当在ArrayList任意位置插入或者删除元素时,就需要将后序元素整体往前或者往后搬移,时间复杂度为O(n),效率比较低,因此ArrayList不适合做任意位置插入和删除比较多的场景。因此:java集合中又引入了LinkedList,即链表结构。 2. 链表 2.1 链表的概念及结构 链表是一种物理存储结构上非连续存储结构,数据元素

大学生自救数据结构与算法(py实现)——01递归

目录 目录 递归 基本概念 工作原理 基本要素 优点 缺点 实现技巧 实例解析:计算阶乘 斐波那契数列 高效的斐波那契数列 python中的最大递归深度 二分查找 基本原理 性能分析 优化与变体 线性递归  元素序列的递归求和 二路递归 二路递归的基本概念 典型应用 工作原理 多重递归  示例:计算卡特兰数(Catalan Number) 尾递

数据结构和算法(1) ---- Queue 的原理和实现

Queue 的定义和结构 队列(Queue) 是只允许在一端进行插入,在另一端进行删除的线性表 队列是一种先进先出(First In First Out)的线性表,简称 FIFO(First IN First OUT), 允许插入的一端称为队尾, 允许删除的一端称为队列头 队列的基本结构如下图所示: Queue 的抽象数据类型 队列也有线性表的各种操作,不同的是插入元素只能在队列尾,删除