本文主要是介绍浙大数据结构:树的定义与操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
四种遍历
#include<iostream>
#include<queue>
using namespace std;
typedef struct treenode *BinTree;
typedef BinTree position;
typedef int ElementType;
struct treenode
{ElementType data;BinTree left;BinTree right;treenode(){left=NULL,right=NULL;}
};void inordertraval(BinTree b)
{if(b){inordertraval(b->left);cout<<b->data;inordertraval(b->right);}
}void preordertraval(BinTree b)
{if(b){cout<<b->data;preordertraval(b->left);preordertraval(b->right);}
}void postordertraval(BinTree b)
{if(b){postordertraval(b->left);postordertraval(b->right);cout<<b->data;}
}void levelordertraval(BinTree b)
{queue<treenode> Q;BinTree B;if(!b)return ;Q.push(*b);while(!Q.empty()){treenode t=Q.front();cout<<t.data;Q.pop();if(t.left)Q.push(*t.left);if(t.right)Q.push(*t.right);}}
树的插入与删除
BinTree Insert( BinTree BST, ElementType X )
{if(!BST){BST=(BinTree)malloc(sizeof(struct TNode));BST->Data=X;BST->Left=BST->Right=NULL;return BST;}if(X < BST->Data)BST->Left=Insert(BST->Left,X);else if(X > BST->Data)BST->Right=Insert(BST->Right,X);return BST;
}BinTree Delete( BinTree BST, ElementType X )
{Position tmp;if(!BST)printf("Not Found\n");else{if(X<BST->Data)BST->Left=Delete(BST->Left,X);else if(X>BST->Data)BST->Right=Delete(BST->Right,X);else {
if(BST->Left&&BST->Right)
{tmp=FindMin(BST->Right);BST->Data=tmp->Data;BST->Right=Delete(BST->Right,BST->Data);}else {tmp=BST;if(!BST->Left)BST=BST->Right;else BST=BST->Left;free(tmp);}}}return BST;
}
查找,查找最小,查找最大
Position Find( BinTree BST, ElementType X )
{if(!BST)return NULL;if(X>BST->Data)return Find(BST->Right,X);else if(X<BST->Data)return Find(BST->Left,X);else return BST;
}Position FindMin( BinTree BST )
{
if(!BST)return NULL;else if(!BST->Left)return BST;else return FindMin(BST->Left);
}Position FindMax( BinTree BST )
{if(!BST)return NULL;else if(!BST->Right)return BST;else return FindMax(BST->Right);
}
这篇关于浙大数据结构:树的定义与操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!