代码随想录算法训练营DAY51|C++动态规划Part12|1143.最长公共子序列、1035.不相交的线、53.最大子序列和

本文主要是介绍代码随想录算法训练营DAY51|C++动态规划Part12|1143.最长公共子序列、1035.不相交的线、53.最大子序列和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1143.最长公共子序列
    • 思路
    • CPP代码
  • 1035.不相交的线
  • 53.最大子序列和
    • 思路
    • CPP代码

1143.最长公共子序列

力扣题目链接

文章讲解:1143.最长公共子序列

视频讲解:动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列

本题其实就跟718.最长重复子数组类似,不要求连续了,但是还是要求相对顺序的。

思路

  • 确定dp数组下标及其含义

和之前718.最长重复子数组套路一样,唯一的区别只体现在递推公式中。我们还是使用一个二维dp来表达

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

  • 确定递推公式

主要就是两大情况: text1[i - 1]text2[j - 1]相同,text1[i - 1]text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

  • dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

  • 确定遍历顺序

从递推公式可以看出,我们分别从三个方向(当前格的左上、左、上)来得出当前格的值

所以肯定是从前往后,从上到下遍历矩阵

  • 打印

以输入:text1 = “abcde”, text2 = “ace” 为例,dp状态如图:

CPP代码

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};

1035.不相交的线

力扣题目链接

文章讲解:1035.不相交的线

视频讲解:动态规划之子序列问题,换汤不换药 | LeetCode:1035.不相交的线

状态:把相同元素连成线,找出那些不相交的线,其实就是啥啊,求两个字符串的最长公共子序列长度

在上题中,我们已经讲过了1143.最长公共子序列

直接copy,就能通过

class Solution {
public:int maxUncrossedLines(vector<int>& A, vector<int>& B) {vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));for (int i = 1; i <= A.size(); i++) {for (int j = 1; j <= B.size(); j++) {if (A[i - 1] == B[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[A.size()][B.size()];}
}

53.最大子序列和

力扣题目链接

文章讲解:53.最大子序列和

视频讲解:看起来复杂,其实是简单动态规划 | LeetCode:53.最大子序和

状态:之前我们用贪心算法写过一次本题贪心算法:最大子序和,其实也很简单,这次用动规写一遍,也很简单

思路

  • dp数组含义

dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]

  • 递推公式

dp[i]只有两个方向可以推出来:

  1. dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

  2. nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

需要注意的是,本题的最大值可不一定存在与dp数组的最后一个元素,因为根据dp[i]的定义是以nums[i]为结尾)的最大连续子序列和。所以后续我们必须用一个容器来装dp数组的最大值,免得最后还要再遍历一遍。

dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
  • 初始化

0下标初始化为nums[0]

其他均初始化为0

  • 遍历顺序

从小到大遍历

  • 打印

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:

CPP代码

class Solution {
public:int maxSubArray(vector<int>& nums) {if (nums.size() == 0) return 0;vector<int> dp(nums.size());dp[0] = nums[0];int result = dp[0];for (int i = 1; i < nums.size(); i++) {dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值}return result;}
};

这篇关于代码随想录算法训练营DAY51|C++动态规划Part12|1143.最长公共子序列、1035.不相交的线、53.最大子序列和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957677

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.