代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

本文主要是介绍代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 121.买卖股票的最佳时机
    • 思路
    • CPP代码
  • 122.买卖股票的最佳时机II
    • 思路
    • CPP代码
  • 123.买卖股票的最佳时机III
    • 思路
    • CPP代码

121.买卖股票的最佳时机

力扣题目链接

文章讲解:121.买卖股票的最佳时机

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

状态:非常与众不同的动态规划题,也是一类典型的动态规划题。

思路

  • dp数组的含义

dp[i][0]表示第i天持有这支股票能获得的最大现金,dp[i][1]表示第i天不持有这支股票能获得的最大现金。

最终要求的结果就是最后一天的状态:max(dp[len-1][0], dp[len-1][i])

并且应该注意的是,我们这里是第i天持有这支股票,并不代表我在第i天才买,我有可能之前就买了;同理,我们第i天不持有这支股票并不代表我第i天才卖。并且我们在最后拿结果的时候,肯定是dp[len(prices)][1],因为无论怎么着,我们不持有这支股票获利肯定都比在最后一天还持有股票来的高

  • 递推公式

    • 先讨论一下dp[i][0]

      • 首先确定do[i][0]表示第i天持有这支股票,那么dp[i-1][0]呢?其实他们两个是相等的, 因为我们前后两天都是持有股票;

        再一个,我们我们是在第i天才买入这支股票的话,那么也就是说我在i-1天是不持有这支股票的,并且在第i天花了买股票的钱所以直接dp[i][0]直接就是-price[i]

        综上所述:dp[i][0]=max(dp[i-1][0], -prices[i])

    • 再就是dp[i][1]

      • 同理,我们的前一天也可以是不持有这支股票的状态dp[i-1][1],此时的话和dp[i][1]他们两个相等
      • 那么如果,我们在第i天把这支股票给卖了变成了dp[i][1],那么此时我们现在手里的钱就是前一天持有股票的最大金额再加上今天卖股票赚的钱dp[i-1][0]+prices[i]
      • 综上所述:dp[i][1]=max(dp[i-1][1], dp[i-1][0]+prices[i])
  • dp数组的初始化

从公式可以看出来,我们的dp[0][0]dp[0][1]是我们整个递推公式的基础,那么dp[0][0]=-prices[0]dp[0][1]=0;然后其他的均初始化为多少其实都无所谓。

  • 遍历顺序

没讲究,直接从前向后遍历

  • 举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

20210224225642465

CPP代码

我们从递推公式可以看出:

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

dp[i]只与dp[i-1]的状态有关,所以完全可以用滚动数组,也就是只需要记录 当前天的dp状态和前一天的dp状态就可以了

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

122.买卖股票的最佳时机II

力扣题目链接

文章链接:122.买卖股票的最佳时机II

视频链接:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

状态:可以实现多次买卖,这个时候最主要的不同体现在递推公式上。如果会121.买卖股票的最佳时机,本题就比较简单

思路

本题唯一的区别就是本题的股票可以买卖多次(只有一只股票,所以再次购买前要出售掉之前的股票)

所以本题和121.买卖股票的最佳时机唯一的区别就在于递推公式,其他的地方都是一样的。首先,我们重申一下dp数组的含义:dp[i][0] 表示第i天持有股票所得现金;dp[i][1] 表示第i天不持有股票所得最多现金

  • 递推公式

在121.买卖股票的最佳时机中,由于股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]

本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润


接下来开始讨论核心代码:

那么如果第i天持有股票,如果是在第i天买入的,那么所得现金就是昨天不持有股票的现金再减去今天股票的价格,所以dp[i - 1][1] - prices[i]

如果第i天不持有股票即dp[i][1]

  1. i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  2. i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

综上所述:递推公式为

            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

CPP代码

这里仅给出滚动数组版本的代码( 只记录当前天的dp状态和前一天的dp状态

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

123.买卖股票的最佳时机III

力扣题目链接

文章链接:123.买卖股票的最佳时机III

视频链接:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

状态:看到困难吓我一跳

本题有又变套路了,题目中谈到,至多买卖两次,这就意味着可以买卖一次、可以买卖两次、也可以不买卖。

但其实最本质的无非就是要设置的状态多多了,之前我们也就两个状态,持有和不持有

思路

  • 确定dp数组以及下标的含义

现在,我们状态比之前多多了:

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]i表示第i天,j[0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  • 确定递推公式
  1. 我们确定dp[i][1]的状态
    在这里插入图片描述

我们应该从两种情况里选择最大的,即dp[i][1]=max(dp[i-1][0]=prices[i], dp[i-1][1])

  1. 确定dp[i][2]的状态

在这里插入图片描述

同理dp[i][2]=max(dp[i-1][1] + prices[i], do[i-1][2])

3.确定dp[i][3]的状态

在这里插入图片描述

同理dp[i][3]=max(dp[i-1][2] + prices[i], do[i-1][3])

  1. 确定dp[i][4]的状态

在这里插入图片描述

同理dp[i][4]=max(dp[i-1][3] + prices[i], do[i-1][4])

  • dp数组的初始化

首先,我们只用初始化第0天,因为从此之后的n天都是由前一天初始化来的。

然后,dp[0][0]显然是等于0的,

每次的买入操作应当初始化为-prices[0],因为买入我们本次的钱肯定就是负数了,至于第二次买入可以理解为我们第零天先买入,再卖出,然后再买入

卖出操作应该初始化为0,因为就算再同一天买入卖出收获的钱肯定是0

vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
  • 确定遍历顺序

跟之前的一样,从左到右即可

  • 举例推导dp数组

以输入[1,2,3,4,5]为例

20201228181724295-20230310134201291

我们最终的最大利润肯定是出现在最后一天的第二次dp[4][4]

CPP代码

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};//空间优化(滚动数组)
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};

这篇关于代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956345

相关文章

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias