代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

本文主要是介绍代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 121.买卖股票的最佳时机
    • 思路
    • CPP代码
  • 122.买卖股票的最佳时机II
    • 思路
    • CPP代码
  • 123.买卖股票的最佳时机III
    • 思路
    • CPP代码

121.买卖股票的最佳时机

力扣题目链接

文章讲解:121.买卖股票的最佳时机

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

状态:非常与众不同的动态规划题,也是一类典型的动态规划题。

思路

  • dp数组的含义

dp[i][0]表示第i天持有这支股票能获得的最大现金,dp[i][1]表示第i天不持有这支股票能获得的最大现金。

最终要求的结果就是最后一天的状态:max(dp[len-1][0], dp[len-1][i])

并且应该注意的是,我们这里是第i天持有这支股票,并不代表我在第i天才买,我有可能之前就买了;同理,我们第i天不持有这支股票并不代表我第i天才卖。并且我们在最后拿结果的时候,肯定是dp[len(prices)][1],因为无论怎么着,我们不持有这支股票获利肯定都比在最后一天还持有股票来的高

  • 递推公式

    • 先讨论一下dp[i][0]

      • 首先确定do[i][0]表示第i天持有这支股票,那么dp[i-1][0]呢?其实他们两个是相等的, 因为我们前后两天都是持有股票;

        再一个,我们我们是在第i天才买入这支股票的话,那么也就是说我在i-1天是不持有这支股票的,并且在第i天花了买股票的钱所以直接dp[i][0]直接就是-price[i]

        综上所述:dp[i][0]=max(dp[i-1][0], -prices[i])

    • 再就是dp[i][1]

      • 同理,我们的前一天也可以是不持有这支股票的状态dp[i-1][1],此时的话和dp[i][1]他们两个相等
      • 那么如果,我们在第i天把这支股票给卖了变成了dp[i][1],那么此时我们现在手里的钱就是前一天持有股票的最大金额再加上今天卖股票赚的钱dp[i-1][0]+prices[i]
      • 综上所述:dp[i][1]=max(dp[i-1][1], dp[i-1][0]+prices[i])
  • dp数组的初始化

从公式可以看出来,我们的dp[0][0]dp[0][1]是我们整个递推公式的基础,那么dp[0][0]=-prices[0]dp[0][1]=0;然后其他的均初始化为多少其实都无所谓。

  • 遍历顺序

没讲究,直接从前向后遍历

  • 举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

20210224225642465

CPP代码

我们从递推公式可以看出:

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

dp[i]只与dp[i-1]的状态有关,所以完全可以用滚动数组,也就是只需要记录 当前天的dp状态和前一天的dp状态就可以了

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

122.买卖股票的最佳时机II

力扣题目链接

文章链接:122.买卖股票的最佳时机II

视频链接:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

状态:可以实现多次买卖,这个时候最主要的不同体现在递推公式上。如果会121.买卖股票的最佳时机,本题就比较简单

思路

本题唯一的区别就是本题的股票可以买卖多次(只有一只股票,所以再次购买前要出售掉之前的股票)

所以本题和121.买卖股票的最佳时机唯一的区别就在于递推公式,其他的地方都是一样的。首先,我们重申一下dp数组的含义:dp[i][0] 表示第i天持有股票所得现金;dp[i][1] 表示第i天不持有股票所得最多现金

  • 递推公式

在121.买卖股票的最佳时机中,由于股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]

本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润


接下来开始讨论核心代码:

那么如果第i天持有股票,如果是在第i天买入的,那么所得现金就是昨天不持有股票的现金再减去今天股票的价格,所以dp[i - 1][1] - prices[i]

如果第i天不持有股票即dp[i][1]

  1. i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  2. i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

综上所述:递推公式为

            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

CPP代码

这里仅给出滚动数组版本的代码( 只记录当前天的dp状态和前一天的dp状态

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

123.买卖股票的最佳时机III

力扣题目链接

文章链接:123.买卖股票的最佳时机III

视频链接:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

状态:看到困难吓我一跳

本题有又变套路了,题目中谈到,至多买卖两次,这就意味着可以买卖一次、可以买卖两次、也可以不买卖。

但其实最本质的无非就是要设置的状态多多了,之前我们也就两个状态,持有和不持有

思路

  • 确定dp数组以及下标的含义

现在,我们状态比之前多多了:

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]i表示第i天,j[0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  • 确定递推公式
  1. 我们确定dp[i][1]的状态
    在这里插入图片描述

我们应该从两种情况里选择最大的,即dp[i][1]=max(dp[i-1][0]=prices[i], dp[i-1][1])

  1. 确定dp[i][2]的状态

在这里插入图片描述

同理dp[i][2]=max(dp[i-1][1] + prices[i], do[i-1][2])

3.确定dp[i][3]的状态

在这里插入图片描述

同理dp[i][3]=max(dp[i-1][2] + prices[i], do[i-1][3])

  1. 确定dp[i][4]的状态

在这里插入图片描述

同理dp[i][4]=max(dp[i-1][3] + prices[i], do[i-1][4])

  • dp数组的初始化

首先,我们只用初始化第0天,因为从此之后的n天都是由前一天初始化来的。

然后,dp[0][0]显然是等于0的,

每次的买入操作应当初始化为-prices[0],因为买入我们本次的钱肯定就是负数了,至于第二次买入可以理解为我们第零天先买入,再卖出,然后再买入

卖出操作应该初始化为0,因为就算再同一天买入卖出收获的钱肯定是0

vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
  • 确定遍历顺序

跟之前的一样,从左到右即可

  • 举例推导dp数组

以输入[1,2,3,4,5]为例

20201228181724295-20230310134201291

我们最终的最大利润肯定是出现在最后一天的第二次dp[4][4]

CPP代码

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};//空间优化(滚动数组)
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};

这篇关于代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956345

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

你的华为手机升级了吗? 鸿蒙NEXT多连推5.0.123版本变化颇多

《你的华为手机升级了吗?鸿蒙NEXT多连推5.0.123版本变化颇多》现在的手机系统更新可不仅仅是修修补补那么简单了,华为手机的鸿蒙系统最近可是动作频频,给用户们带来了不少惊喜... 为了让用户的使用体验变得很好,华为手机不仅发布了一系列给力的新机,还在操作系统方面进行了疯狂的发力。尤其是近期,不仅鸿蒙O

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo