数据设计:通过微调来优化SLM(小模型)的性能

2024-05-03 03:52

本文主要是介绍数据设计:通过微调来优化SLM(小模型)的性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:data-design-for-fine-tuning-to-improve-small-language-model-behaviour

2024 年 4 月 17 日

通过使用创造性的数据格式来微调数据,教授小语言模型进行自我纠正和推理。通过提示删除和部分答案屏蔽。

小语言模型通常缺乏自我意识,并且往往对其生成的响应表现出更大的信心。采用提示擦除和部分答案屏蔽 (PAM) 方法可显着提高 SLM 响应的质量

介绍

似乎在最近的过去,当谈到语言模型(LLM 和 SLM)时,焦点一直集中在数据交付部分。换句话说,如何在推理时将专有数据引入语言模型。

数据传输过程可以分为两种主要方法:梯度方法和非梯度方法。非梯度方法因其透明而不是像梯度/微调方法那样不透明而受到广泛关注。

到目前为止,最流行的非梯度数据传输方法是 RAG 及其所有变体。

我发现有趣的是,一些微调/梯度方法的主要目的并不是将企业或领域特定数据注入语言模型。而是通过微调数据的结构、特定任务来改变模型的行为并教授模型。这些任务包括推理和自我纠正等功能。

数据设计

重点从数据交付转向数据设计,其中数据格式的设计方式是为模型赋予特定的行为能力

推理

微软研究院训练 Orca-2 的主要重点是创建一个擅长推理的开源小语言模型 (SLM) 。这是通过分解问题并逐步解决它来实现的,这增加了可观察性和可解释性。

为了实现这一目标,必须创建细致入微的培训数据,向LLMs提出复杂的提示,其设计目的是引出策略推理模式,从而产生更准确的结果。

此外,在训练阶段,较小的模型会接受任务以及LLMs的后续输出。LLMs的输出数据定义了LLMs如何解决问题。

但这里有一个问题,原始提示不会显示给 SLM。这种“即时擦除”方法是一种将 Orca-2 变成谨慎推理机的技术,因为它不仅学习如何执行特定的推理步骤,还学习如何在更高层次上制定如何完成特定任务的策略。

LLMs不是天真地模仿强大的LLMs,而是被用作行为的储存库,从中为当前任务的方法做出明智的选择。

自我修正

最近的一项研究通过提出一种称为部分答案屏蔽(PAM)的方法,提出了构建自校正训练数据的管道,旨在通过微调使模型具有内在的自校正能力。

部分答案屏蔽的目标是指示语言模型进行自我纠正。

答案屏蔽

本研究通过在两项任务中使用参数大小从 60 亿到 130 亿不等的语言模型进行实验。

该研究引入了一种增强小语言模型自我纠正能力的方法,提出了内在自我纠正(ISC),这是一种依赖两种基本能力的机制:自我验证自我修改

在微调阶段,该过程引入部分答案屏蔽(PAM),为模型注入自我验证功能。

结果首次证明,即使是只有 60 亿个参数的小型语言模型,在响应生成过程中也具有固有的自我校正能力,与地面事实的依赖无关。

所提出的内在自我纠正努力将自我纠正作为一种固有模式嵌入到语言模型中。它需要一个自主且自发的自我修正过程,与现有的即时工程方法不同。

为了使小语言模型具有自纠错能力,设计了一种用于构建自纠错数据的管道并建立了可普遍应用于生成自纠错任务的数据的数据格式。

综上所述

这两项研究提出了一种方法,即创建细致入微的训练数据,为小语言模型 (SLM) 灌输特定的推理和自我纠正技能。

微调通常与向模型添加知识、增强模型的知识相关。然而,这种特定的数据设计方法侧重于微调,以增强语言模型的功能和行为,而不是添加用于检索的知识。

我很确定,一定会有更多设计训练数据以更新模型行为的创造性方法的例子。

这篇关于数据设计:通过微调来优化SLM(小模型)的性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955780

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变