tensorflow 卷积神经网络 Inception-v3模型 迁移学习

2024-05-02 13:32

本文主要是介绍tensorflow 卷积神经网络 Inception-v3模型 迁移学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

____tz_zs小练习


案例来源于 《TensorFlow实战Google深度学习框架》


谷歌提供的训练好的Inception-v3模型: https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip

案例使用的数据集: http://download.tensorflow.org/example_images/flower_photos.tgz

数据集文件解压后,包含5个子文件夹,子文件夹的名称为花的名称,代表了不同的类别。平均每一种花有734张图片,图片是RGB色彩模式,大小也不相同。


# -*- coding: utf-8 -*-
"""
@author: tz_zs卷积神经网络 Inception-v3模型 迁移学习
"""
import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile# inception-v3 模型瓶颈层的节点个数
BOTTLENECK_TENSOR_SIZE = 2048# inception-v3 模型中代表瓶颈层结果的张量名称
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
# 图像输入张量所对应的名称
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'# 下载的谷歌训练好的inception-v3模型文件目录
MODEL_DIR = '/path/to/model/google2015-inception-v3'
# 下载的谷歌训练好的inception-v3模型文件名
MODEL_FILE = 'tensorflow_inception_graph.pb'# 保存训练数据通过瓶颈层后提取的特征向量
CACHE_DIR = 'tmp/bottleneck'# 图片数据的文件夹
INPUT_DATA = '/path/to/flower_data'# 验证的数据百分比
VALIDATION_PERCENTAGE = 10
# 测试的数据百分比
TEST_PERCENTACE = 10# 定义神经网路的设置
LEARNING_RATE = 0.01
STEPS = 4000
BATCH = 100# 这个函数把数据集分成训练,验证,测试三部分
def create_image_lists(testing_percentage, validation_percentage):"""这个函数把数据集分成训练,验证,测试三部分:param testing_percentage:测试的数据百分比 10:param validation_percentage:验证的数据百分比 10:return:"""result = {}# 获取目录下所有子目录sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]# ['/path/to/flower_data', '/path/to/flower_data\\daisy', '/path/to/flower_data\\dandelion',# '/path/to/flower_data\\roses', '/path/to/flower_data\\sunflowers', '/path/to/flower_data\\tulips']# 数组中的第一个目录是当前目录,这里设置标记,不予处理is_root_dir = Truefor sub_dir in sub_dirs:  # 遍历目录数组,每次处理一种if is_root_dir:is_root_dir = Falsecontinue# 获取当前目录下所有的有效图片文件extensions = ['jpg', 'jepg', 'JPG', 'JPEG']file_list = []dir_name = os.path.basename(sub_dir)  # 返回路径名路径的基本名称,如:daisy|dandelion|roses|sunflowers|tulipsfor extension in extensions:file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)  # 将多个路径组合后返回file_list.extend(glob.glob(file_glob))  # glob.glob返回所有匹配的文件路径列表,extend往列表中追加另一个列表if not file_list: continue# 通过目录名获取类别名称label_name = dir_name.lower()  # 返回其小写# 初始化当前类别的训练数据集、测试数据集、验证数据集training_images = []testing_images = []validation_images = []for file_name in file_list:  # 遍历此类图片的每张图片的路径base_name = os.path.basename(file_name)  # 路径的基本名称也就是图片的名称,如:102841525_bd6628ae3c.jpg# 随机讲数据分到训练数据集、测试集和验证集chance = np.random.randint(100)if chance < validation_percentage:validation_images.append(base_name)elif chance < (testing_percentage + validation_percentage):testing_images.append(base_name)else:training_images.append(base_name)result[label_name] = {'dir': dir_name,'training': training_images,'testing': testing_images,'validation': validation_images}return result# 这个函数通过类别名称、所属数据集和图片编号获取一张图片的地址
def get_image_path(image_lists, image_dir, label_name, index, category):""":param image_lists:所有图片信息:param image_dir:根目录 ( 图片特征向量根目录 CACHE_DIR | 图片原始路径根目录 INPUT_DATA ):param label_name:类别的名称( daisy|dandelion|roses|sunflowers|tulips ):param index:编号:param category:所属的数据集( training|testing|validation ):return: 一张图片的地址"""# 获取给定类别的图片集合label_lists = image_lists[label_name]# 获取这种类别的图片中,特定的数据集(base_name的一维数组)category_list = label_lists[category]mod_index = index % len(category_list)  # 图片的编号%此数据集中图片数量# 获取图片文件名base_name = category_list[mod_index]sub_dir = label_lists['dir']# 拼接地址full_path = os.path.join(image_dir, sub_dir, base_name)return full_path# 图片的特征向量的文件地址
def get_bottleneck_path(image_lists, label_name, index, category):return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt'  # CACHE_DIR 特征向量的根地址# 计算特征向量
def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):""":param sess::param image_data:图片内容:param image_data_tensor::param bottleneck_tensor::return:"""bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})bottleneck_values = np.squeeze(bottleneck_values)return bottleneck_values# 获取一张图片对应的特征向量的路径
def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):""":param sess::param image_lists::param label_name:类别名:param index:图片编号:param category::param jpeg_data_tensor::param bottleneck_tensor::return:"""label_lists = image_lists[label_name]sub_dir = label_lists['dir']sub_dir_path = os.path.join(CACHE_DIR, sub_dir)  # 到类别的文件夹if not os.path.exists(sub_dir_path): os.makedirs(sub_dir_path)bottleneck_path = get_bottleneck_path(image_lists, label_name, index, category)  # 获取图片特征向量的路径if not os.path.exists(bottleneck_path):  # 如果不存在# 获取图片原始路径image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)# 获取图片内容image_data = gfile.FastGFile(image_path, 'rb').read()# 计算图片特征向量bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)# 将特征向量存储到文件bottleneck_string = ','.join(str(x) for x in bottleneck_values)with open(bottleneck_path, 'w') as bottleneck_file:bottleneck_file.write(bottleneck_string)else:# 读取保存的特征向量文件with open(bottleneck_path, 'r') as bottleneck_file:bottleneck_string = bottleneck_file.read()# 字符串转float数组bottleneck_values = [float(x) for x in bottleneck_string.split(',')]return bottleneck_values# 随机获取一个batch的图片作为训练数据(特征向量,类别)
def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category, jpeg_data_tensor,bottleneck_tensor):""":param sess::param n_classes: 类别数量:param image_lists::param how_many: 一个batch的数量:param category: 所属的数据集:param jpeg_data_tensor::param bottleneck_tensor::return: 特征向量列表,类别列表"""bottlenecks = []ground_truths = []for _ in range(how_many):# 随机一个类别和图片编号加入当前的训练数据label_index = random.randrange(n_classes)label_name = list(image_lists.keys())[label_index]  # 随机图片的类别名image_index = random.randrange(65536)  # 随机图片的编号bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, category, jpeg_data_tensor,bottleneck_tensor)  # 计算此图片的特征向量ground_truth = np.zeros(n_classes, dtype=np.float32)ground_truth[label_index] = 1.0bottlenecks.append(bottleneck)ground_truths.append(ground_truth)return bottlenecks, ground_truths# 获取全部的测试数据
def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):bottlenecks = []ground_truths = []label_name_list = list(image_lists.keys())  # ['dandelion', 'daisy', 'sunflowers', 'roses', 'tulips']for label_index, label_name in enumerate(label_name_list):  # 枚举每个类别,如:0 sunflowerscategory = 'testing'for index, unused_base_name in enumerate(image_lists[label_name][category]):  # 枚举此类别中的测试数据集中的每张图片'''print(index, unused_base_name)0 10386503264_e05387e1f7_m.jpg1 1419608016_707b887337_n.jpg2 14244410747_22691ece4a_n.jpg...105 9467543719_c4800becbb_m.jpg106 9595857626_979c45e5bf_n.jpg107 9922116524_ab4a2533fe_n.jpg'''bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor)ground_truth = np.zeros(n_classes, dtype=np.float32)ground_truth[label_index] = 1.0bottlenecks.append(bottleneck)ground_truths.append(ground_truth)return bottlenecks, ground_truthsdef main(_):image_lists = create_image_lists(TEST_PERCENTACE, VALIDATION_PERCENTAGE)n_classes = len(image_lists.keys())# 读取模型with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:graph_def = tf.GraphDef()graph_def.ParseFromString(f.read())# 加载模型,返回对应名称的张量bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(graph_def, return_elements=[BOTTLENECK_TENSOR_NAME,JPEG_DATA_TENSOR_NAME])# 输入bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')# 全连接层with tf.name_scope('final_training_ops'):weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))biases = tf.Variable(tf.zeros([n_classes]))logits = tf.matmul(bottleneck_input, weights) + biasesfinal_tensor = tf.nn.softmax(logits)# 损失cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)cross_entropy_mean = tf.reduce_mean(cross_entropy)# 优化train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)# 正确率with tf.name_scope('evaluation'):correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))with tf.Session() as sess:# 初始化参数init = tf.global_variables_initializer()sess.run(init)for i in range(STEPS):# 每次获取一个batch的训练数据train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(sess, n_classes, image_lists, BATCH,'training', jpeg_data_tensor,bottleneck_tensor)# 训练sess.run(train_step,feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})# 验证if i % 100 == 0 or i + 1 == STEPS:validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(sess, n_classes,image_lists, BATCH,'validation',jpeg_data_tensor,bottleneck_tensor)validation_accuracy = sess.run(evaluation_step, feed_dict={bottleneck_input: validation_bottlenecks,ground_truth_input: validation_ground_truth})print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%' % (i, BATCH, validation_accuracy * 100))# 测试test_bottlenecks, test_ground_truth = get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor,bottleneck_tensor)test_accuracy = sess.run(evaluation_step,feed_dict={bottleneck_input: test_bottlenecks, ground_truth_input: test_ground_truth})print('Final test accuracy = %.1f%%' % (test_accuracy * 100))if __name__ == '__main__':tf.app.run()'''
Step 0: Validation accuracy on random sampled 100 examples = 40.0%
Step 100: Validation accuracy on random sampled 100 examples = 81.0%
Step 200: Validation accuracy on random sampled 100 examples = 79.0%
Step 300: Validation accuracy on random sampled 100 examples = 92.0%
Step 400: Validation accuracy on random sampled 100 examples = 90.0%
Step 500: Validation accuracy on random sampled 100 examples = 88.0%
Step 600: Validation accuracy on random sampled 100 examples = 89.0%
Step 700: Validation accuracy on random sampled 100 examples = 94.0%
Step 800: Validation accuracy on random sampled 100 examples = 91.0%
Step 900: Validation accuracy on random sampled 100 examples = 88.0%
Step 1000: Validation accuracy on random sampled 100 examples = 84.0%
Step 1100: Validation accuracy on random sampled 100 examples = 92.0%
Step 1200: Validation accuracy on random sampled 100 examples = 86.0%
Step 1300: Validation accuracy on random sampled 100 examples = 91.0%
Step 1400: Validation accuracy on random sampled 100 examples = 96.0%
Step 1500: Validation accuracy on random sampled 100 examples = 89.0%
Step 1600: Validation accuracy on random sampled 100 examples = 94.0%
Step 1700: Validation accuracy on random sampled 100 examples = 90.0%
Step 1800: Validation accuracy on random sampled 100 examples = 94.0%
Step 1900: Validation accuracy on random sampled 100 examples = 94.0%
Step 2000: Validation accuracy on random sampled 100 examples = 94.0%
Step 2100: Validation accuracy on random sampled 100 examples = 93.0%
Step 2200: Validation accuracy on random sampled 100 examples = 92.0%
Step 2300: Validation accuracy on random sampled 100 examples = 96.0%
Step 2400: Validation accuracy on random sampled 100 examples = 92.0%
Step 2500: Validation accuracy on random sampled 100 examples = 92.0%
Step 2600: Validation accuracy on random sampled 100 examples = 93.0%
Step 2700: Validation accuracy on random sampled 100 examples = 90.0%
Step 2800: Validation accuracy on random sampled 100 examples = 92.0%
Step 2900: Validation accuracy on random sampled 100 examples = 91.0%
Step 3000: Validation accuracy on random sampled 100 examples = 96.0%
Step 3100: Validation accuracy on random sampled 100 examples = 90.0%
Step 3200: Validation accuracy on random sampled 100 examples = 94.0%
Step 3300: Validation accuracy on random sampled 100 examples = 97.0%
Step 3400: Validation accuracy on random sampled 100 examples = 95.0%
Step 3500: Validation accuracy on random sampled 100 examples = 92.0%
Step 3600: Validation accuracy on random sampled 100 examples = 94.0%
Step 3700: Validation accuracy on random sampled 100 examples = 94.0%
Step 3800: Validation accuracy on random sampled 100 examples = 95.0%
Step 3900: Validation accuracy on random sampled 100 examples = 95.0%
Step 3999: Validation accuracy on random sampled 100 examples = 94.0%
Final test accuracy = 95.4%
'''













这篇关于tensorflow 卷积神经网络 Inception-v3模型 迁移学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/954358

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首