一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)

本文主要是介绍一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💡💡💡本文摘要:一种基于YOLOv8改进的高精度小目标检测算法, 在红外小目标检测任务中实现暴力涨点;

💡💡💡创新点:

1)SPD-Conv特别是在处理低分辨率图像和小物体等更困难的任务时优势明显;

2)引入Wasserstein Distance Loss提升小目标检测能力;

3)YOLOv8中的Conv用cvpr2024中的DynamicConv代替;

原创组合创新,可直接使用至其他小目标检测任务;

💡💡💡实验结果:在红外小目标检测任务中mAP由原始的0.755 提升至0.901

  博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8、v9优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

《YOLOv9魔术师》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.小目标检测介绍

1.1 小目标定义

1)以物体检测领域的通用数据集COCO物体定义为例,小目标是指小于32×32个像素点(中物体是指32*32-96*96,大物体是指大于96*96);
2)在实际应用场景中,通常更倾向于使用相对于原图的比例来定义:物体标注框的长宽乘积,除以整个图像的长宽乘积,再开根号,如果结果小于3%,就称之为小目标;

1.2 难点

1)包含小目标的样本数量较少,这样潜在的让目标检测模型更关注中大目标的检测;

2)由小目标覆盖的区域更小,这样小目标的位置会缺少多样性。我们推测这使得小目标检测的在验证时的通用性变得很难;

3)anchor难匹配问题。这主要针对anchor-based方法,由于小目标的gt box和anchor都很小,anchor和gt box稍微产生偏移,IoU就变得很低,导致很容易被网络判断为negative sample;

4)它们不仅仅是小,而且是难,存在不同程度的遮挡、模糊、不完整现象;

等等难点

参考论文:小目标检测研究进展  

2. 小目标数据集

数据集下载地址:GitHub - YimianDai/sirst: A dataset constructed for single-frame infrared small target detection

Single-frame InfraRed Small Target 

数据集大小:427张,进行3倍数据增强得到1708张,最终训练集验证集测试集随机分配为8:1:1

 3.一种基于YOLOv8改进的高精度小目标检测算法 

1)SPD-Conv特别是在处理低分辨率图像和小物体等更困难的任务时优势明显

2)引入Wasserstein Distance Loss提升小目标检测能力

3)YOLOv8中的Conv用cvpr2024中的DynamicConv代替

YOLOv8_SPD-DynamicConv summary (fused): 199 layers, 5181707 parameters, 0 gradients, 32.2 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 6/6 [00:15<00:00,  2.58s/it]all        171        199      0.929      0.854      0.901      0.623

3.1  loss优化

Wasserstein Distance Loss

1)分析了 IoU 对微小物体位置偏差的敏感性,并提出 NWD 作为衡量两个边界框之间相似性的更好指标;

2)通过将NWD 应用于基于锚的检测器中的标签分配、NMS 和损失函数来设计强大的微小物体检测器;

3)提出的 NWD 可以显着提高流行的基于锚的检测器的 TOD 性能,它在 AI-TOD 数据集上的 Faster R-CNN 上实现了从 11.1% 到 17.6% 的性能提升;
 

​​

Wasserstein Distance Loss |   亲测在红外弱小目标检测涨点明显,map@0.5 从0.755提升至0.784 

Yolov8红外弱小目标检测(2):Wasserstein Distance Loss,助力小目标涨点_AI小怪兽的博客-CSDN博客

layers parametersGFLOPskb mAP50
yolov816830058438.161030.755
Wasserstein loss16830058438.161030.784

3.2  SPD-Conv

SPD-Conv由一个空间到深度(SPD)层和一个无卷积步长(Conv)层组成,可以应用于大多数CNN体系结构。我们从两个最具代表性的计算即使觉任务:目标检测和图像分类来解释这个新设计。然后,我们将SPD-Conv应用于YOLOv5和ResNet,创建了新的CNN架构,并通过经验证明,我们的方法明显优于最先进的深度学习模型,特别是在处理低分辨率图像和小物体等更困难的任务时。
​​

Yolov8红外弱小目标检测(4):SPD-Conv,低分辨率图像和小物体涨点明显_AI小怪兽的博客-CSDN博客

SPD-Conv |   亲测在红外弱小目标检测涨点明显,map@0.5 从0.755提升至0.875

layers parametersGFLOPskb mAP50
yolov816830058438.161030.755
yolov8_SPD174359873949.273940.875

3.3  DynamicConv

论文: https://arxiv.org/pdf/2306.14525v2.pdf

摘要:大规模视觉预训练显著提高了大型视觉模型的性能。然而,我们观察到低FLOPs的缺陷,即现有的低FLOPs模型不能从大规模的预训练中获益。在本文中,我们引入了一种新的设计原则,称为ParameterNet,旨在增加大规模视觉预训练模型中的参数数量,同时最小化FLOPs的增加。我们利用动态卷积将额外的参数合并到网络中,而FLOPs仅略有上升。ParameterNet方法允许低flops网络利用大规模视觉预训练。此外,我们将参数网的概念扩展到语言领域,在保持推理速度的同时增强推理结果。在大规模ImageNet-22K上的实验证明了该方案的优越性。例如ParameterNet-600M可以在ImageNet上实现比广泛使用的Swin Transformer更高的精度(81.6%对80.9%),并且具有更低的FLOPs (0.6G对4.5G)。在语言领域,使用ParameterNet增强的LLaMA- 1b比普通LLaMA准确率提高了2%

YOLOv8轻量化涨点改进: 卷积魔改 | DynamicConv | CVPR2024 ParameterNet,低计算量小模型也能从视觉大规模预训练中获益-CSDN博客

4.源码获取

关注下方名片点击关注,即可源码获取途径。  

这篇关于一种基于YOLOv8改进的高精度红外小目标检测算法 (原创自研)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/949975

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X